The wheretotrim package*

Scott Pakin
scott+wtt@pakin.org

May 15, 2013

1 Introduction

wheretotrim is a tool to help IMTEX users reduce their document’s page count. It is
intended to be used with documents that exceed a publisher’s specified page-length
limitation by a small amount (much less than a full column or page). wheretotrim
is therefore similar to the savetrees package in that both seek to reduce page count.
The two differ in that savetrees saves space by altering document formatting while
wheretotrim suggests where text can be removed to reduce page count without
altering any formatting. wheretotrim and savetrees are compatible with each
other, though: wheretotrim can safely be run on a document that includes a
\usepackage{savetrees}.

wheretotrim operates by building the document repeatedly, successively ex-
panding each column on each page by one line height to mimic reducing the amount
of text in that column by an equivalent amount. If doing so does not reduce the
page count, wheretotrim repeats the process with two line heights’ expansion of
each column, then three, and so forth until it expands each column in turn by the
full height of the column. The following is some sample output for a single-column
document when wheretotrim is run with the --allpages option (cf. Section :

To reduce the page count from 11 to 10, do any of the following:

lines.
lines.

Reduce page 2 by 8

Reduce page 5 by 7

Reduce page 6 by 7 lines.
Reduce page 7 by 7 lines.
Reduce page 8 by 7 lines.
Reduce page 9 by 7 lines.
Reduce page 10 by 5 lines.

Reduce page 11 by 5 lines.

* X X X ¥ X ¥ ¥

Note: 5 lines = 1.0" = 2.5 cm = 11.1% of the page height

*This document corresponds to wheretotrim v1.0, dated 2013/05/15.

That is, reducing either page 10 or page 11 by five lines is the most expedient
way to reduce the document’s page count. Seven lines would need to be cut from
page 5, 6, 7, or 8 to achieve the same effect, and eight lines would need to be cut
from page 2. In contrast, no amount of text trimming on pages 1, 3, or 4 will
reduce the page count.

2

Usage

Sections [2.1H2.4] explain how to use wheretotrim.

2.1 Command-line options

Run wheretotrim as follows:

or

_a,

-V,

-q,

-h,

_V,

wheretotrim [--allpages] [--verbose | --quiet]
[--debug=(page),{column),({lines)] (latex command)

wheretotrim [--verbose] --help | --version

wheretotrim accepts the following command-line options:

--allpages Perform enough extra runs of latex to report the amount of space
that must be trimmed from each column or page to reduce page count, not
just the columns or pages to which the page count is the most sensitive.

--verbose Display the output of each run of latex. This is useful for trou-
bleshooting and to help monitor the progress of long latex runs.

--quiet Suppress progress updates and output only the final report.

(page),{column),(lines), --debug={(page),(column),(lines) Debug
wheretotrim’s execution by expanding page (page), column (column) by
(lines) line heights and leaving the latex output in that state.

--help Summarize usage information and exit. These may be used with
--verbose to display more extended documentation.

--version Display wheretotrim’s version number and exit.

In addition to the preceding options, wheretotrim requires a (latex command)

argument that specifies how to build the document.

2.2 Examples

For the most basic usage, simply provide a latex command to run:

wheretotrim latex myfile.tex

or, for example,

wheretotrim pdflatex myfile.tex

wheretotrim executes the specified command a large number of times and
finally terminates with a report resembling the following:

To reduce the page count from 10 to 9, do any of the following:
* Reduce page 9, column 1 by 12 lines.
* Reduce page 9, column 2 by 12 lines.
* Reduce page 10, column 1 by 12 lines.

Note: 12 lines = 2.4" = 6.1 cm = 26.8), of the column height

To ask wheretotrim to report how much space needs to be trimmed on each
column and page to reduce the total page count, specify the --allpages option:

wheretotrim --allpages latex myfile.tex

The output now looks like the following;:

To reduce the page count from 10 to 9, do any of the following:

* Reduce page 1, column 1 by 13 lines.
* Reduce page 1, column 2 by 13 lines.
* Reduce page 2, column 1 by 13 lines.
* Reduce page 2, column 2 by 13 lines.
* Reduce page 4, column 1 by 13 lines.
* Reduce page 4, column 2 by 13 lines.
* Reduce page 5, column 1 by 13 lines.
* Reduce page 5, column 2 by 13 lines.
* Reduce page 6, column 1 by 13 lines.
* Reduce page 6, column 2 by 13 lines.
* Reduce page 7, column 1 by 13 lines.
* Reduce page 7, column 2 by 13 lines.
* Reduce page 8, column 1 by 13 lines.
* Reduce page 8, column 2 by 13 lines.
* Reduce page 9, column 1 by 12 lines.
* Reduce page 9, column 2 by 12 lines.
* Reduce page 10, column 1 by 12 lines.

Note: 12 lines = 2.4" = 6.1 cm = 26.8% of the column height

If you’re curious how the document managed to shrink substantially as the
result of a relatively minor text reduction, you can typeset the document with a
particular page and column enlarged by a given amount:

wheretotrim --debug=9,1,12 latex myfile.tex

2.3 Caveats

wheretotrim hooks into IATEX’s output routines, which are notoriously arcane
and somewhat fragile. As a result, it is quite likely that wheretotrim will fail
to analyze a large set of documents. Use the --verbose flag to help identify any
problems that latex encounters.

In many cases, wheretotrim will recover by simply ignoring a few possible page
and column expansions. For example, certain expansions may result in aFloat (s)
lost|message. In other cases, wheretotrim will fail to analyze any modification to
the document. For example, it may receive an Infinite glue shrinkage found
in box being split error from every page and column variation it tries. In
this particular case, see the discussion at http://www.michaelshell.org/tex/
ieeetran/.

When wheretotrim is used with a latex auto-build script you may need to
take measures to force the script to rebuild the document even if it appears that
no files have changed. For example, latexmk should be given the -CF option to
force rebuilding:

wheretotrim latexmk -CF myfile.tex

2.4 Restrictions

wheretotrim is implemented as a Perl script with an auxiliary ITEX 2¢ package.
It has been tested only on Linux, but I suspect that it should also work on OS X.
I doubt it will work under Windows, though, due to the way the script uses a
bash-specific technique for redirecting the standard error device into the standard
output device.

3 Package implementation

This section presents the commented XTEX source code for the wheretotrim pack-
age. Read this section if you want to learn how the package is implemented. Note
that the package is not intended to be used explicitly (i.e., via \usepackage) but
rather implicitly by the wheretotrim Perl script.

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fllost
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=fllost
http://www.michaelshell.org/tex/ieeetran/
http://www.michaelshell.org/tex/ieeetran/

\wtt@target@column

\wtt@column@expand

3.1 Theory of operation

The wheretotrim package mimics the effect of reducing a given page and column
of a document by a given number of line heights. For simplicity, it does so by
enlarging the specified column (so as to fit additional lines of text) rather than by
reducing the amount of text in that column.

Users are not expected to load the wheretotrim package explicitly. Instead,
whenever the wheretotrim script needs to observe the effect of enlarging a given
column, it creates a temporary .tex file using the following template:

\RequirePackage [column={absolute column)],
expansion=(lines),
extracols=(padding columns)]{wheretotrim}
\PassOptionsToPackage{draft}{hyperref}
\input{(filename)}

where (absolute column) is the absolute column number to expand (with the first
column on the first page being numbered 1); (lines) is the number of line heights
(multiples of \baselineskip) by which to enlarge that column; (padding columns)
is the number of extra full columns to append to the document (cf. Section ;
and (filename) is the name of the user’s top-level BTEX file.

The wheretotrim package works by modifying various TEX- and IXTEX-internal
commands. At every \shipout, wheretotrim increases the absolute page counter.
Whenever ITEX constructs a column using \@makecol, wheretotrim logs the cur-
rent absolute page and column numbers and invokes IXTEX’s \enlargethispage
macro when on the target page and column number. Because \@makecol is
not called for every column, wheretotrim additionally modifies \clearpage and
\maketitle also to conditionally enlarge the current column.

At the end of the document, wheretotrim outputs \baselineskip and
\textheight, as these are needed by the wheretotrim script.

3.2 Package options

The wheretotrim package accepts three package options—column, expansion,
and extracols—which are described below in the context of, respectively,
\wtt@target@column, \wtt@column@expand, and \wtt@extra@full@columns.

\wtt@target@column is set by the column option and defaults to nonexistent
column 0. It specifies the absolute column number to expand.

1 \newcommand{\wtt@target@column}{0}

The \wtt@column@expand length—implemented as an ordinary macro—is set by
the expansion option and defaults to Opt. It specifies the number of lines by
which to expand that column (i.e., the multiple of \baselineskip).

2 \newcommand{\wtt@column@expand}{Opt}

\wtt@extra@full@columns

\next

\c@wtt@true@page

\c@uwtt@column@num

\wtt@makecol

\wtt@extra@full@columns is set by the extracols option and specifies the num-
ber of additional, dummy, full columns to append to the end of the document to
force spillover onto an additional page.

3 \newcommand{\wtt@extra@full@columns}{0}

We use the keyval package to help with option processing as it’s widely available
and wheretotrim’s option-processing needs are fairly simple.

4 \RequirePackage{keyval}

5 \define@key{wtt}{column}{\gdef\wtt@target@column{#1}}
6 \define@key{wtt}{expansion}{%
7 \xdef\wtt@column@expand{#1\noexpand\baselineskipl}y,

8}
9 \define@key{wtt}{extracols}{\gdef\wtt@extra@full@columns{#1}}

Process our options. We need to expand \CurrentOption before passing it to
keyval’s \setkeys macro, however.

10 \DeclareOption*{%

11 \edef\next{\noexpand\setkeys{wtt}{\CurrentOption}}/,

12 \next

13 }

14 \ProcessOptions\relax

3.3 Column enlargement

The wheretotrim package needs to keep track of the current page number. The
page counter is unsuitable for this task because it is really a page name. That
is, (1) it is not necessarily numeric (e.g., it may be a roman numeral while in
the document’s front matter), and (2) it is not necessarily unique (e.g., page may
be 1 on the title page, abstract, and first page of text). To address this limitation
we define a wtt@true@page counter and, with the help of the everyshi package,
prepare for it to be incremented on every TEX page shipout.

15 \newcounter{wtt@true@page}
16 \setcounter{wtt@true@page}{1}

17 \RequirePackage{everyshi}
18 \EveryShipout{\addtocounter{wtt@true@page}{1}}

The wheretotrim package also needs to keep track of the current absolute column
number. By “absolute” we mean a running column number that does not reset
to 1 on each page. We define a wtt@column@num counter to hold the current
column number, and, below, we modify ITEX 2¢’s \@makecol macro to increment
it. Note that some pages may contain fewer pages than others due to, for example,
\clearpage calls that cause pages to ship out early.

19 \newcounter{wtt@column@num}

Before redefining \@makecol, we store its old definition in \wtt@makecol.
20 \let\wtt@makecol=\@makecol

\@makecol \@makecol is IATEX 2¢’s primary mechanism for typesetting a column:

\@makecol: Makes the contents of \box255 plus the accumulated footnotes, plus
the floats in \@toplist and \@botlist, into a single column of height
\@colht (unless the page height has been locally changed), which it puts
into box \@outputbox. It puts boxes in \@midlist back onto \@freelist
and restores \maxdepth.

Here, we augment \@makecol with code to report the current column and page
number—and for the user’s convenience, page name (\thepage). Our redefined
\@makecol then increments the current absolute column number and compares it
against \wtt@target@column. If equal, it uses IIEX 2:’s \enlargethispage to
increase the column height. Finally, it invokes the original \@makecol (stored in
\wtt@makecol to typeset the column.

21 \def\O@makecol{%

22 \PackageInfo{wheretotrim}y,

23 {Column \thewtt@column@num\space is on page
24 \thewtt@true@page\space (\thepage)l}’

25 \addtocounter{wtt@column@num}{1}}

26 \ifnum\value{wtt@column@num}=\wtt@target@column

27 \enlargethispage{\wtt@column@expandl}’,
28 \fi

29 \wtt@makecol

30 ¥

\wtt@clearpage Before redefining \clearpage, we store its old definition in \wtt@clearpage.

31 \let\wtt@clearpage=\clearpage

\clearpage I#TEX2:’s \clearpage macro frustrates the wheretotrim package’s attempts to
enlarge a given column. We therefore redefine \clearpage first to perform its
ordinary behavior (stored in \wtt@clearpage, then to check the value of the
preceding penalty item. If the last penalty is -10001 then this is an opportune
time to insert an \enlargethispage (assuming the current column is equal to
\wtt@target@column). Because \clearpage may be called multiple times in a
row and may be followed by \@makecol we restore the column counter to its prior
value after comparing it to \wtt@target@column so it is not multiply incremented.

Note that \cleardoublepage internally calls \clearpage so it is sufficient to
redefine only \clearpage.
32 \gdef\clearpage{/
33 \wtt@clearpage
34 \ifnum\lastpenalty=-10001\relax

35 \addtocounter{wtt@column@num}{1}%

36 \ifnum\value{wtt@column@num}=\wtt@target@column
37 \enlargethispage{\wtt@column@expand}’

38 \fi

39 \addtocounter{wtt@column@num}{-13}%

40 \fi

41}

\wtt@maketitle

\maketitle

Wait until after the \begin{document} to redefine \maketitle in case
\maketitle is modified before that point.

42 \AtBeginDocument{%

Before redefining \maketitle, we store its old definition in \wtt@maketitle.
43 \let\wtt@maketitle=\maketitle

\maketitle is problematic macro for the wheretotrim package because of the way
it switches into two-column mode within a one-column document (via WTEX 2¢’s
\twocolumn macro). For lack of a more general solution we redefine \maketitle
to enlarge the column only after typesetting the title and only when in two-column
mode. Otherwise, the \enlargethispage inserted by \@makecol already had its
intended effect.

44 \gdef\maketitle{’

45 \wtt@maketitle

46 \if@twocolumn

47 \ifnum\value{wtt@column@num}=\wtt@target@column
48 \enlargethispage{\wtt@column@expandl}/,

49 \fi

50 \fi

51 }%

52 }

3.4 Page spillover

Normally, it would not be possible to reduce page count by enlarging the last
column by any amount. The trick we use here is to add to the end of the document
a full column or two to make the document spill over onto an additional page, as
illustrated by Figure [I} Thus, enlarging the last column by the height of the text
it contains will enable a padding column to shift into that column and reduce the
page count.

-

Figure 1: Padding a document with extra columns to induce page spillover

53 \AtEndDocument{/

Add zero, one, or two columns of padding (a \parbox of width \linewidth and
height \textheight) based on the value of \wtt@extra@full@columns (set by
the extracols package option).

basename_newsuffix

54 \ifnum\wtt@extra@full@columns>0\relax

55 \noindent\parbox [t] [\textheight] {\linewidth}{%
56 \rule{\linewidth}{\baselineskip}}\par

57 \ifnum\wtt@extra@full@columns>1\relax

58 \noindent\parbox [t] [\textheight] {\linewidth}{%
59 \rule{\linewidth}{\baselineskip}}\par

60 \fi

61 \fi

Also at the end of the document, output the value of \baselineskip and the
value of \textheight, as these are read by the wheretotrim script.

62 \PackageInfo{wheretotrim}},

63 {Baseline skip: \the\baselineskip}/
64 \PackageInfo{wheretotrim}/,

65 {Text height: \the\textheightl}/,

66 ¥

4 Script implementation

This section presents the commented ETEX source code for the wheretotrim Perl
script. Read this section if you want to learn how the script is implemented.

4.1 Subroutine defintions

67 #! /usr/bin/env perl

68 use File: :Basename;

69 use File::Temp qw(tempfile);
70 use Getopt::Long;

71 use POSIX;

72 use Pod: :Usage;

73 use warnings;

74 use strict;

Define some global variables.
75 my $progname = basename $0;
76 my $logfile;
77 my $verbosity = 1;
78 my $allpages = 0;
79 my @latexcmd;
gomy $ltxfile;
81 my $colsperpage = 1;
82 my ‘column2page;
83 my $debugexp;
84 our $VERSION = "1.0";

#
#
#
#
#
#
#
#
#
#

Name of this program

LaTeX-generated log file

Level of output verbosity

1=report changes needed for all pages; O=any page

Complete command to run LaTeX

Name of input file

Number of columns per page (1 or 2)

Map from absolute column number to {page, column}

Typeset using an expansion of <page>,<column>,<expansion lines>
Version number of this program

Define a subroutine that replaces a file name with its base name and (optionally)

new suffix.

85 sub basename_newsuffix ($;$)
86 {

create_latex_file

run_latex

87
88
89
90
91 }

my ($fname, $newsuffix) = @_;

my ($basename, undef, undef) = fileparse($fname, qr/.[".1*/);
$newsuffix = "" if !defined $newsuffix;

return $basename . $newsuffix;

Define a subroutine to create a temporary IXTEX file that modifies a few KTEX
commands then loads the user’s document. The subroutine returns the name of
the temporary file.

92 sub create_latex_file ($$$)

93 {
94
95
96
97
98
99
100
101
102
103
104 }

my ($columntoexpand, $columnexpandlines, $extrafullcolumns) = @_;
my ($modltx, $modltxfile) = tempfile("wtt-XXXXXX",

TMPDIR => 1,

SUFFIX => ".tex",

UNLINK => 1);
print $modltx "RequirePackage[column=$columntoexpand,expansion=$columnexpandlines,extracols
print $modltx "PassOptionsToPackage{draft}{hyperref}n"; # Avoid "pdfendlink ended up in d

print $modltx "input{$ARGV[$#ARGV]}In";
close $modltx;
return $modltxfile;

Define a subroutine to run I¥TEX on a given filename.
105 sub run_latex ($$$$)

106 {

107
108
109

110

112
113
114

116
117
118
119
120
121
122
123
124
125
126

Add some additional arguments to the BTEX command.

my ($modltxfile, $columntoexpand, $columnexpandlines, $extrafullcolumns) = Q_;
my $jobname = basename_newsuffix($ltxfile);
@latexcmd = (@ARGV[O..$#ARGV-1], "-jobname=$jobname", $modltxfile);

Run ETEX.

if ($verbosity == 1) {
if ($columntoexpand == 0) {
print "Compiling $1ltxfile normally";
if ($extrafullcolumns > 0) {
printf ", but with %s columnjs of padding", $extrafullcolumns, $extrafullcolumn
}
print " ... ";
}
elsif ($colsperpage == 1) {
my ($page, $col) = @{$column2page{$columntoexpand}};
printf "Compiling %s with page %d expanded by %d linels ... ",
$1txfile, $page, $columnexpandlines, $columnexpandlines == 1 7 "" : "g";
}
else {
my ($page, $col) = @{$column2page{$columntoexpand}};
printf "Compiling %s with page %d, column %d expanded by %d line¥)s ... ",
$1txfile, $page, $col, $columnexpandlines, $columnexpandlines == 1 7 "" : "s";

10

127 }

128 }

129 elsif ($verbosity > 1) {

130 print "Running @latexcmd\n";

131 }

132 open(LATEX, "-|", "sh", "-c", ’echo X | "$@" 2>&1’, "--", $latexcmd[0], @latexcmd[1l..$#late
133 while (my $oneline = <LATEX>) {

134 print $oneline if $verbosity > 1;

135 }

136 close LATEX;

137 my $errcode = $7;

138 if ($verbosity == 1) {

139 print $errcode == 0 ? "done.\n" : "failed.\n";
140 }

141 elsif ($verbosity > 1) {

142 print "Finished running.\n";

143 }

144 return $errcode;

145 }

process_log_file Define a subroutine to process a log file and return various data extracted from it.
146 sub process_log_file ($$$)

147 {
148 my ($columntoexpand, $columnexpandlines, $extrafullcolumns) = @_;
149 my %column_map;

Extract wheretotrim information lines and the final page count.

150 print "Processing $logfile ... " if $verbosity > 0;

151 my ($numpages, $baselineskip, $textheight) = (0, 0, 0);

152 open(LOGFILE, "<", $logfile) || die "${progname}: Failed to open $logfile ($!)\n";
153 my $infostr = "Package wheretotrim Info";

154 while (my $oneline = <LOGFILE>) {

155 $baselineskip = $1+0 if $oneline =~ /~$infostr: Baseline skip: ([\d.]l+)pt/;
156 $textheight = $1+0 if $oneline =~ /"$infostr: Text height: ([\d.I+)pt/;

157 $column_map{$1} = [$2, $3] if $oneline =~ /“$infostr: Column (\d+) is on page (\d+) \((
158 $numpages = $1 if $oneline =~ /"Output written on.*\((\d+) page/;

159 }

160 close LOGFILE;

161 $numpages—-- if $extrafullcolumns > O;

162 if ($verbosity > 0) {

163 printf "done (%d page’s).\n",

164 $numpages, $numpages == 1 7 "" : "s",

165 }

166 return ($numpages, $baselineskip, $textheight, \)column_map) ;

167 }

latex_page_count Define a subroutine to run KTEX and return a page count and other information.

168 sub latex_page_count ($$$)
169 {

11

ETEX wrapper scripts might not like being given IXTEX code on the command
line. We therefore create a temporary file that prepares KTEX for programmati-
cally modifying column heights.

170 my ($columntoexpand, $columnexpandlines, $extrafullcolumns) = @_;

171 my $modltxfile = create_latex_file($columntoexpand, $columnexpandlines, $extrafullcolumns);

Run latex on the temporary file.

172 my $errcode = run_latex($modltxfile, $columntoexpand, $columnexpandlines, $extrafullcolumns

173 unlink $modltxfile;
Process the log file.

174 return (0, undef, undef, undef) if $errcode '= 0;
175 return process_log_file($columntoexpand, $columnexpandlines, $extrafullcolumns);
176 }

4.2 Main program execution

Parse the command line.

177 my $wanthelp = 0;
178 my $wantversion = 0;
179 Getopt: :Long: :Configure("require_order") ;

180 GetOptions("h|help" => \$wanthelp,

181 "V|version" => \$wantversion,

182 "alallpages" => \$allpages,

183 "1lllogfile=s" => \$logfile,

184 "v|verbose+" => \$verbosity,

185 "d|debug=s" => \$debugexp,

186 "qlquiet" => sub {$verbosity = 0})
187 || pod2usage(-exitval => 2);

188 if ($wantversion) {

189 print "wheretotrim $VERSION\n";

190 exit O;

191 ¥

192 pod2usage (-verbose => $verbosity,

193 -exitval => 1) if $wanthelp;

194 pod2usage (-message => "${progname}: A latex command must be specified",
195 -exitval => 2) if $#ARGV == -1;

196 $1txfile = basename ($ARGV[$#ARGV]) ;
197 $logfile = basename_newsuffix ($ARGV[$#ARGV], ".log") if !defined $logfile;

Determine the document’s baseline characteristics.

198 my ($basepages, $baselineskip, $textheight, $c2p_ptr) = latex_page_count 0, O,

199 die "${progname}: Failed to build $ltxfile\n" if $basepages == 0;
200 %icolumn2page = %$c2p_ptr;
201 print "\n" if $verbosity > 0;
Map an absolute column to a page and column number.
202 my $prevpage = O;
203 foreach my $col (sort {$a <=> $b} keys Y%column2page) {
204 my ($pagenum, $pagename) = @{$column2page{$coll};

12

205 if ($pagenum == $prevpage) {

206 $column2page{$col} = [$pagenum, 2, $pagename];
207 $colsperpage = 2;

208 }

209 else {

210 $column2page{$col} = [$pagenum, 1, $pagename];
211 }

212 $prevpage = $pagenum;

213 }

If we were given a page, column, and expansion, typeset the document with
those parameters and exit.

214 if (defined $debugexp) {
215 die "${prognamel}: Failed to parse \"$debugexp\" into {page, column, expansion}\n" if $debug

Convert page and column number to absolute column number.

216 my ($target_page, $target_col, $expansion) = ($1, $2, $3);

217 my $testcol;

218 while (my ($abscol, $page_col) = each %column2page) {

219 if ($target_page == $page_col->[0] && $target_col == $page_col->[1]) {

220 $testcol = $abscol;

221 last;

222 }

223 }

224 die "${progname}: Failed to map page $target_page, column $target_col to an absolute column

Enlarge the given page.

225 my ($numpages, undef) = latex_page_count $testcol, $expansion, $colsperpage;
226 print "\n" if $verbosity > 0;

227 latex_page_count $testcol, $expansion, O; # Run again without appending any extra columns
228 print "\n" if $verbosity > 0;

229 print "Expanding page $target_page, column $target_col by $expansion lines ";
230 if ($numpages == $basepages) {

231 print "does not reduce the page count below $numpages pages.\n";

232 }

233 else {

234 print "reduces the page count from $basepages pages to $numpages pages.\n";
235 }

236 exit O;

237 }

Determine columns for which no amount of expansion will reduce the page
count.

238 my $maxexpansion = int($textheight/$baselineskip + 1);

239 my Qcomplete = (0, O+keys %column2page); # Fraction complete (numerator and denominator)
240 foreach my $expcol (sort {$a <=> $b} keys ’column2page) {

241 my ($numpages, undef) = latex_page_count $expcol, $maxexpansion, $colsperpage;

242 if ($verbosity > 0) {

243 $complete [0]++;

244 printf "Trial runs are %.1f%% complete.\n\n", 100.0*$complete[0]/$complete[1];

245 }

13

246 delete $column2page{$expcol} if $numpages > O && $numpages == $basepages;
247 }

Keep expanding a page by greater and greater amounts until we reduce our
page count.

248 my %col2savings; # Map from an absolute column to an {expansion, page count} tuple.

249 my $target_num_cols = $allpages 7 (keys jicolumn2page) : 1; # Minimum number of columns for wh
250 my $minexpansion; # Minimum value of the above that saves a page

251 @complete = (0, $maxexpansionxkeys %column2page);

252 foreach my $expansion (1 .. $maxexpansion) {

Expand each column in turn.

253 foreach my $expcol (sort {$a <=> $b} keys Ycolumn2page) {

254 $complete [0]++;

255 next if defined $col2savings{$expcol}; # Already finished

256 next if $column2page{$expcol}->[0] == $basepages && $column2page{$expcoll}->[1] == 2;
257 my ($numpages, undef) = latex_page_count $expcol, $expansion, $colsperpage;

258 if ($numpages > O && $numpages < $basepages) {

259 $col2savings{$expcol} = [$expansion, $numpages];

260 $minexpansion = $expansion if !defined $minexpansion;

261 }

262 if ($verbosity > 0) {

263 printf "Execution is %.1f%), complete.\n\n", 100.0*$complete[0]/$complete[1];
264 }

265 }

266 last if keys %col2savings >= $target_num_cols; # Success

267 }

Restore the document to its original form.

268 run_latex $1ltxfile, 0, 0, O;
269 printf "Execution is 100.0%} complete.\n\n" if $verbosity > 0;

Output the space savings.
270 if (keys %col2savings == 0) {

271 printf "It does not appear possible to reduce the page count from %d to %d\n",
272 $basepages, $basepages-1;

273 print "by removing any amount of text from any single column.\n\n";

274 exit O;

275 }

276 printf "To reduce the page count from %d to %d, do %s following:\n\n",

277 $basepages, $basepages-1, keys Jcol2savings == 1 7 "the" : "any of the";

278 foreach my $abscol (sort {$a <=> $b} keys Ycol2savings) {
279 my ($expansion, $numpages) = @{$col2savings{$abscoll};
280 my ($page, $col, $pagename) = @{$column2page{$abscol}};

281 print " * Reduce page $page";

282 print " (\"$pagename\")" if $pagename ne $page;

283 print ", column $col" if $colsperpage > 1;

284 printf " by %d %s", $expansion, $expansion == 1 ? "line" : "lines";

285 if ($numpages < $basepages - 1) {

286 printf " (produces %d %s)", $numpages, $numpages == 1 7 "page" : "pages";
287 }

14

288
289 }
290 print "\n";

291 my $minpoints =

print ".\n";

293
294

$minexpansion*$baselineskip;
292 printf "Note: %d lines = %.1f\" = %.1f cm =
$minexpansion, $minpoints/72.27, $minpoints/28.45,
100.0*$minpoints/$textheight, $colsperpage

%.1£%% of the s height\n",

1 ? "page" "column";

The wheretotrim script ends with POD-format documentation. This is not
listed here because it is largely redundant with the contents of Sections [If and
See those sections for documentation about wheretotrim’s usage.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\$... 180-185
N o 166
\@makecol 20, 21
basename_newsuffix

(Perl) 85
create_latex_file

(Perl) 92
latex_page_count

(Perl) 168
process_log_£file

(Perl) 146
run_latex (Perl) 105

A

--allpages (program

option)
\AtBeginDocument 42
\AtEndDocument 53

B

\baselineskip

C
\c@wtt@column@num . 19
\c@wtt@true@page .. 15

\clearpage

=1

column (package op-
tion)
command-line options
......... see
program optiond]
\CurrentOption 11
D
--debug (program op-
tion)
\DeclareOption 10
\define@key 5, 6,9
E
\enlargethispage
....... 27, 37, 48
everyshi (package) |§|
\EveryShipout 18
expansion (package op-
tion)
extracols (package op-
tion) |§|,
H
--help (program op-
tion)
I
\if@twocolumn 46
K

keyval (package)

15

L
\lastpenalty 34
latex (program)
latexmk (program) . . .

\linewidth 55, 56, 58, 59

M
\maketitle 43, 44
N
\next 10
P
package options
column
expansion
extracols 8|
\PackageInfo . 22,62, 64
packages
everyshi
keyval
savetrees

wheretotrim

\parbox
Perl subroutines:
basename_newsuffix

............ 85

168
146

latex_page_count
process_log_file

http://perldoc.perl.org/perlpod.html

run_latex
\ProcessOptions ... 14
program options

--allpages

--debug

--quiet
--verbose

--version
programs
bash
latexmk
latex
wheretotrim ...

--quiet (program op-

tion)
R
\RequirePackage 4,17
\rule 56, 59
S
savetrees (package) ...
\setkeys 11
T
\textheight .. 55, 58, 65
\thepage 24
\thewtt@column@num . 23
\thewtt@true@page . 24
Vv
--verbose (program
option) 2]

16

--version (program

option)

W
wheretotrim (package)

wheretotrim (pro-
gram) . . @

\wtt@clearpage .. 31, 33

\wtt@column®@expand .

. 2,7,27, 37,48
\wtt@extra@full@columns
3,9, 54, 57
\wtt@makecol 20,29
\wtt@maketitle .. 43,45
\wtt@target@column .

. 1,5, 26, 36, 47

	Introduction
	Usage
	Command-line options
	Examples
	Caveats
	Restrictions

	Package implementation
	Theory of operation
	Package options
	Column enlargement
	Page spillover

	Script implementation
	Subroutine defintions
	Main program execution

	Index

