che Funktion f definiert man das Residuum im Punkt a als $\mathop{\rm Res}_{z=a} f(z) = \mathop{\rm Res}_a f = \frac{1}{2\pi {\rm i}} \int\limits_{-\pi}^{\pi} f(z) \, dz \, ,$

 $a\alpha b\beta c\partial d\delta e\epsilon \epsilon f(\xi g\gamma h\hbar\hbar iiijjkk \varkappa ll\lambda mn \eta\theta \vartheta o\sigma \varsigma \phi \phi \rho pp pg r s t \tau \pi u \mu \nu v v w \omega \varpi$

 $x\chi y\psi z\infty \propto \emptyset \varnothing d\eth Э$

wobei
$$C \subset D \setminus \{a\}$$
 ein geschlossener Weg mit $n(C,a)=1$ ist (z.B. ein entgegen dem Uhrzeigersinn durchlaufener Kreis).
ΑΛΔ ∇ BCD Σ EF Γ GHIJKLMNOΘ Ω \mho PΦΠ Ξ QRSTUVWXY Υ ΨZ

Theorem 1 (Residuum). Für eine in einer punktierten Kreisscheibe $D \setminus \{a\}$ analytis-