prettytok — Pretty-print token lists*

user202729
Released 2023/04/18

Abstract

Pretty-print token lists for debugging purposes.
Can be used to replace \t1_analysis_show:n.

1 Motivation

TEX/ETEX s default mechanism for debug-printing — that is, the following:
e \showtokens{...},

e \show.. .,

\typeout{\unexpanded{...}},
e \tl_show:n,
e ctc.

has a few limitations:

o \show and similar is considered an error and stops the TEX run. (this point is
partially fixable, see the package writer’s question https://tex.stackexchange.
com/q/621919/250119)

o If there’s some unprintable character in the output (for example, ~~J, ~°M, ~°I —
literal tab character), it’s not easy to distinguish between them.

o If some token has unexpected catcode (most commonly, letter versus other), it’s
not easy to distinguish as well.

e They does not work in expansion-only context.

(apart from \msg_expandable_error:nn, but this one suffers from the first problem
as well)

\tl_analysis_show:n attempts to fix the third problem, but is very, very verbose
and does not fix the other problems.

This package aims to fix all of them.

(although the expandable debug printing functions are LuaTgX-only.)

And some more additional (expandable in LuaTgX) functions to inspect the content
of the input stream at a particular moment in time.

*This file describes version v0.2.0, last revised 2023/04/18.

https://tex.stackexchange.com/q/621919/250119
https://tex.stackexchange.com/q/621919/250119

10

11

12

13

14

15

16

17

[

2 Usage

2.1 A complete example

For a full example, the following code, which prints several things, both using the IHTEX 2¢
interface and using the expl3-style interface, using both expandable and unexpandable
command (the former requires LuaTEX, as mentioned in 2.5):

\documentclass{article}
\usepackage{prettytok}

\prettyN{123{4 5}\6}
\prettyN{#&"_:}
\edef\mytest{\prettyeN{\error}}

\prettyN {very long long long long long long long long long long long
— long long long argument \argument\argument\test123456%}
\prettyeN {very long long long long long long long long long long long
— long long long argument \argument\argument\test123456}

\ExplSyntaxOn
\pretty:n {#& _:}
\ExplSyntaxOff

\begin {document}
\prettyW abc \prettystop
\end {document}

The corresponding output (in the current version) is:

> 123{4 5}

> #&”_

>

> very,long long long long long long long long long long long long long
> long argument 123456

> very long long long long long long long long long long long long long
> long argument 123456

> #&T

> abc

2.2 Loading the package

\usepackage{prettytok}

2.3 Options

There are several options that can be passed to the package.
Usage example: \usepackage [mode=term-shell]{prettytok}.

mode=

html-file-name=

html-refresh-strategy=

Specify the working mode of the package, that is, where the output is displayed. It can
either be:

e term-8bit: this is the default.
Assume XTerm-compatible system, output to the terminal.

Requires -8bit option on engines other than LuaTgX, see the following link:
https://tex.stackexchange.com/q/168460/250119.

Besides, this drops the distinction between the catcode of some tokens (for example
{}$#&"_ are all shown as the same color as “special catcode”), which is available
in the tooltip in the HTML version.

This might work on Windows, although the package writer have not tested it. Refer
to https://stackoverflow.com/q/2048509/5267751 and https://superuser.
com/q/413073/577463.

e term-shell: To output colored text to the terminal, —-8bit flag is needed other-
wise the terminal escape codes will be changed to ~~[etc. A workaround, using
TEX Live’s behavior when the file name has the form | ..., is provided with this
option.

Requires --shell-escape flag. May not be very reliable.
Refer to https://tex.stackexchange.com/a/670572/250119 for more details.
e html: output to a HTML file named for example pretty-abc.html (although

this can be customized, refer to html-file-name=) if the main TEX file is named
abc.tex.

Open the file in any browser to view the result.

Using this option, the output will not be cluttered with the traceback/other TEX
default output.

By default, the output refreshes whenever the TEX file is recompiled. The behavior
can be customized with html-refresh-strategy= and html-refresh-duration=.

Currently, it’s not supported to print the debug output to the PDF itself, because
if the TEX program stops with error / has some error that corrupts the PDF output, the
output will even with corrupted more by the debug print.

2.3.1 HTML configuration

These options are only meaningful if mode=html.

The output file name. Defaults to pretty-(jobname).html, as mentioned above.

The auto-refresh strategy. Allowed values are 0-4. 0 is no refresh.

Which value works best depends on the particular browser.

If you’re using Google Chrome to view the output HTML, invoking the browser from the
command-line with -—allow-file-access-from-files flag may be useful.

https://tex.stackexchange.com/q/168460/250119
https://stackoverflow.com/q/2048509/5267751
https://superuser.com/q/413073/577463
https://superuser.com/q/413073/577463
https://tex.stackexchange.com/a/670572/250119

html-refresh-duration=

term-prefix=
term-prefix-more=

term-wrap-limit=

term-shell-decode-cmd=

The duration between two consecutive refresh check, in milliseconds. Defaults to 1000.

2.3.2 Terminal configuration

These options are only meaningful if mode=term-8bit or mode=term-shell.

Strings consist of prefixes to be output before each terminal line.

This might be useful for log-filtering/output-filtering tools such as texfot to recog-
nize the output line.

Defaults to >, and >_,. . respectively.

Estimated line length limit. Set this to a little smaller than your terminal width.
Defaults to 70.

Only meaningful with mode=term-shell.

Normally you would not need to explicitly pass this option, unless something does
not work.

By default, a file named prettytok-decode-8bit.py should be included in your
TEX distribution, and the package runs kpsewhich prettytok-decode-8bit.py to find
the location of that file in order to execute it. However, if by any reason this does not
work, you can specify an explicit command such as python3 /full/path/to/prettytok-
decode-8bit.py to override it.

Passing blank value invokes the default behavior (runs kpsewhich).

Alternatively, you can also choose to explicitly pass the path in order to save a call
to kpsewhich to make the program a bit faster.

If you really want to, special characters may be passed by prefixing them with \.
But \" won’t work anyway (as far as the package writer know, this is impossible in
non-LuaTEX engines).

TEXhackers note: The path is interpreted by detokenizing the value in escapechar=-1.

term-shell-decode-cmd-print=

\pretty:n
\pretty:(x|o|V)

If mode=term-shell, print out the command correspond to term-shell-decode-cmd on
the console, for debugging purpose.

Example output: The value of term-shell-decode-cmd is: [[[./prettytok-
decode-8bit.pyll]

2.4 Main function

\pretty:n {(token list)}

Print the content of (token list).
This is a simple replacement of the functions above. (\tl_analysis_show:n, etc.)

\pretty:w

-

M)

w

\prettystop *

=

\prettyshow:
\prettyshow:

(¢}

=

\pretty:
\pretty:

(e]

\pretty:nn
\pretty:nnn

\prettye:n *

\prettye:w *

\pretty:w (token list) \prettystop

Print the content of (token list).

The purpose of this function is that it can be inserted “anywhere” in order to inspect
the input stream without affecting how the function works.

Note that the input stream will be tokenized and has catcode frozen.

For example

\ExplSyntaxOn
\def \f #1 {\prettye:w 789}
\f 123456 \prettystop

will print out 78923456.
For now, it must be brace-balanced. Use \prettye:w instead if this is a problem.

\prettystop

Only used as a delimiter for :w functions. For convenience, this function is defined to do
nothing.

\prettyshow:N (token)
\prettyshow:c {(control sequence name)}

Show the meaning of a N-type argument.

\pretty:N (token)
\pretty:c {(control sequence name)}
Print (token).
It may also be useful to use \pretty:V to print a token list variable’s value, or
\prettyshow:N to print a control sequence’s meaning.

\pretty:nn {(token list)} {(token list)}
\pretty:nnn {(token list)} {(token list)} {(token list)}

Print multiple token lists. Its effect is similar to multiple consecutive calls to \pretty:n.

2.5 Expandable interface (LuaTgX only)

\prettye:n {(token list)}

Print the token list, similar to \pretty:n, but is fully expandable.

\prettye:w (tokens) \prettystop

Print the tokens until \prettystop is seen. Useful for inspecting the content of the input
stream.

As a debugging tool, it’s possible to execute \everyeof{\prettystopl} to avoid
runaway printing in weird catcode environments.

Currently some implementation details (it can be fixed, but the package writer does
not have an immediate need for it, see https://tex.stackexchange.com/q/335994/
250119) means control sequences not in the hash table will be destroyed. Use with care.

https://tex.stackexchange.com/q/335994/250119
https://tex.stackexchange.com/q/335994/250119

\prettye:nn *
\prettye:nnn *

\prettye:nw

\prettye:nnw *
\prettye:nnnw *

prettyprint

\prettyN
\prettyX
\pretty0
\prettyV
\prettyW
\prettyshowN
\prettyshowC

\prettyeN x*
\prettyeW x*

-

[

\prettye:nn {(token list)} {(token list)}
\prettye:nnn {(token 1list)} {(token list)} {(token list)}

Similar to multiple consecutive calls to \prettye:n.

\prettye:nw {(callback)} (tokens) \prettystop

Same as above, but has a callback, that is, code that is put in the input stream after the
content is printed.

Useful if you want to fine-tune what is printed exactly. (\prettye:w (callback)
(tokens) is functionally the same, but the callback is also printed, which will clutter the
debug output)

For example

\prettye:nw {\somecode ...} 123 \prettystop

will print 123, then after some expansion steps results in the input stream contain
\somecode ... 123 \prettystop.

\prettye:nnw {(callback)} {(token 1list)} (tokems) \prettystop
\prettye:nnnw {(callback)} {(token 1ist)} {(token list)} (tokems) \prettystop

Similar to call(s) to \prettye:n followed by a call to \prettye:nw.
For example

\prettye:nnw {\somecode ...} {123} 456 \prettystop

will print 123456, then, after some expansion steps, \somecode ... 456 \prettystop
remains in the input stream.

2.6 Lua programming interface

prettyprint ({content))

Print the content, which should be a table of token objects.
For convenience, you can pass multiple arguments. Strings are also supported.

2.7 PETEX 2¢ interface

\prettyN {(token list)}

\prettyX {(token list)}

\pretty0 {(token list)}

\prettyV (tl var)

\prettyW (token list) \prettystop
\prettyshowN (token)

\prettyshowC {(control sequence name)}

Alias of the correspondingly-named commands.

\prettyeN {(token list)}
\prettyeW (tokens) \prettystop

Alias of the correspondingly-named commands. Only available in LuaTgX.

3 Implementation

Unfortunately, the implementation is not typesetted in TEX. Read the .sty file.
Remark: it’s possible to do expandable printing in other engines as well by, for exam-
ple, turning on \tracingmacros, parse the token list somehow (and use some not-always-
exact logic to distinguish normal character and active character with same meaning; then
grep the resulting log file for special markers.
But that would be very, very slow and slows down everything else by turning on

logging. Just use LuaTgX for debugging.

There’s another option of recompiling the engine and adding some expandable prim-

itive for debug logging...

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

html-file-name=
html-refresh-duration=
html-refresh-strategy=

pretty commands:
\pretty:N
\pretty:n
\pretty:nn
\pretty:nnn
\pretty:w
prettye commands:
\prettye:n
\prettye:
\prettye:
\prettye:
\prettye:
\prettye:
\prettye:w
\prettyeN
\prettyeW

Gt G G &y

v

\prettyN 0
\pretty0 6
prettyprint 6
prettyshow commands:

\prettyshow:N 5
\prettyshowC 6
\prettyshowN 6
\prettystop 5, 6
\prettyV 6
\prettyW 6
\prettyX 6

T
term-prefix-more= 4
term-prefix= 4
term-shell-decode-cmd-print= 4
term-shell-decode-cmd= 4
term-wrap-limit= 4
TEX and ETEX 2 commands:

\prettyN 6

\pretty0 6

\prettyshowC 6

\prettyshowN 6

\prettyV 6

\prettyX 6

	1 Motivation
	2 Usage
	2.1 A complete example
	2.2 Loading the package
	2.3 Options
	2.3.1 HTML configuration
	2.3.2 Terminal configuration

	2.4 Main function
	2.5 Expandable interface (LuaTeX only)
	2.6 Lua programming interface
	2.7 LaTeX2ε interface

	3 Implementation
	Index
	H
	M
	P
	T

