
The jvlisting package

Jochen Voss
voss@seehuhn.de

http://seehuhn.de/

2011/11/17 v0.7

Abstract

This package provides the LATEX environment listing, an alternative to the built-in
verbatim environment. The listing environment is specially tailored for including listings
of computer program source code into documents. The main advantages over the original
verbatim environment are that listing environments automatically fix leading white-space so
that the environment and program listing can be indented with the rest of the document source
and that listing environments can easily be customised and extended.

Contents

1 Basic Usage 1

2 Extending the listing Environment 2

3 Extending the filelisting Command 3

4 Implementation 4
4.1 Processing the Lines of Input . 4
4.2 Defining Listing Environments . 6
4.3 Reading Listings from File . 6
4.4 Finishing Touches . 7

1 Basic Usage

The listing environment allows to include source code of computer programs in LATEX documents
by including the code between \begin{listing} and \end{listing}.

Example. In order to typeset the listing of a simple Python function (computing the cumulative
sum of a list) you can use the following code in your LATEX document.

\begin{listing}

def cumsum(iterable):

return reduce(lambda res, x: res+[res[-1]+x], iterable, [0])[1:]

\end{listing}

These commands result in the following output:

def cumsum(iterable):

return reduce(lambda res, x: res+[res[-1]+x], iterable, [0])[1:]

1

Differently from the LATEX verbatim environment, the listing environment can be indented to
match the surrounding document source. The following will work as expected:

\begin{figure}[h]

\begin{listing}

def cumsum(iterable):

return reduce(lambda res, x: res+[res[-1]+x], iterable, [0])[1:]

\end{listing}

\end{figure}

The Python code will be typeset using the same indentation as in the previous example, despite the
fact that the code in the two listing environments has different indentation in the LATEX source
code.

To make it easier to copy real program source code directly into your LATEX file, the code in
listings can be indented by TAB characters instead of spaces. The TAB spacing is assumed to be 8
character columns.

In addition to the LATEX environment described above, there is also a command \filelisting

to typeset source code contained in a file. The command takes one argument, the name of the file
to include, and behaves very similar to the the listing environment.

Example. In order to typeset the contents of a file cumsum.py, we could use the following
command.

\filelisting{cumsum.py}

There are various parameters to customise how listings are typeset. These parameters apply
both to the listing environment and to the \filelisting command.

• The amount of space inserted before and after a listing is given by \listingskipamount. The
default value is 1ex. Commands like the following can be used to adjust the amount of space.

\setlength{\listingskipamount}{1\baselineskip}

• The indentation of the left margin of the typeset code is determined by \listingindent. The
default value is 2em. Commands like the following can be used to adjust indentation.

\setlength{\listingindent}{2cm}

• The font used in the listing is controlled by the macro \listingfont. The default value is
\normallistingfont which sets up a typewriter-like font. Example: The following command
can be used to obtain more compact listings by slightly reducing the font size and the line
spacing.

\renewcommand{\listingfont}%

{\normallistingfont\small\renewcommand{\baselinestretch}{0.95}}

• The penalty for page breaks inside a listing is given by \listingpenalty. The higher this
value, the less attractive page breaks inside the listing are to LATEX’s page breaking algorithm.
The default value is 500. The following command can be used to completely disable page
breaks inside listings.

\listingpenalty=10000

• The penalty for page breaks just before or after a listing is given by \prelistingpenalty

(default value 100) and \postlistingpenalty (default value -50), respectively.

2 Extending the listing Environment

New listing-like environments can be defined using the \NewListingEnvironment macro. This
macro takes six arguments and uses them to define a new LATEX environment. The arguments, in
order, are

1. The name of the new environment.

2

2. The number of extra arguments for the new environment (normally 0). These extra arguments
of the environment, if any, are substituted into the initialisation commands (i.e. into the
fourth argument of \NewListingEnvironment); see the copylisting environment, below, for
an example.

3. Commands to execute before the environment is entered (e.g. to add vertical white space).

4. Initialisation commands, executed inside the environment (e.g. font/margin setup).

5. The name of a macro (receiving one argument) which will be used to typeset each line of input.

6. Commands to execute after the environment is completed.

Example. The listing environment provided by the jvlisting package is defined using the
following commands:

\let\listingfont=\normallistingfont

\newcommand{\ListingTypesetLine}[1]{\ifvmode\penalty\listingpenalty\noindent\fi

\hskip\listingindent\strut#1\par}

\newcommand{\prelistingskip}{\endgraf\ifdim\lastskip>\listingskipamount\else

\removelastskip\penalty\prelistingpenalty\vskip\listingskipamount\fi}

\newcommand{\postlistingskip}{\endgraf\penalty\postlistingpenalty

\vskip-\parskip\nobreak\vskip\listingskipamount\noindent}

\NewListingEnvironment{listing}{0}{\prelistingskip}%

{\listingfont\let\ListingStartHook\listingstarthook}{\ListingTypesetLine}%

{\postlistingskip\ignorespacesafterend}

Example. An nlisting environment which generates listings with additional line numbers can
be defined as follows:

\newcounter{lineno}

\newcommand{\typesetnline}[1]{\addtocounter{lineno}{1}%

\noindent\hskip\listingindent\llap{{\it\scriptsize\arabic{lineno}: }}%

\strut #1\par\penalty\listingpenalty}

\NewListingEnvironment{nlisting}{0}{\prelistingskip}%

{\setcounter{lineno}{0}\listingfont}{\typesetnline}{\postlistingskip}

Example. The following code defines a new copylisting environment which does not only
typeset the source code, but also saves a copy in an external file. Here we need to be careful in case
the quote character ‘ can be present in the listing: by default, \listingfont makes ‘ an active
character in order to prevent problems with ligatures, but this fix causes damage to the output of
the \write command. To work around this problem, we can use \DisableLigatureFix (defined by
the jvlisting package for just this purpose) to temporarily disable the ligature fix.

\newwrite\outfile

\newcommand{\copytypeset}[1]{\ListingTypesetLine{#1}%

{\DisableLigatureFix\immediate\write\outfile{#1}}}

\NewListingEnvironment{copylisting}{1}{\prelistingskip}%

{\immediate\openout\outfile=#1\listingfont}{\copytypeset}%

{\immediate\closeout\outfile\postlistingskip}

Here we used the second argument to \NewListingEnvironment to indicate that the copylisting

environment should take an additional parameter (the output file name). The new environment is
used as follows:

\begin{copylisting}{listing1.c}

#include <stdio.h>

int

main()

{

puts("hello, world!");

3

return 0;

}

\end{copylisting}

3 Extending the filelisting Command

New filelisting-like commands can be defined using the \NewFileListingCommand macro. This
macro takes six arguments and uses them to define a new macro. The arguments, in order, are

1. The name of the new command including the leading backslash.

2. The number of arguments for the new command (normally 1). These arguments, including the
first one which gives the file name, are substituted into the third, fourth and sixth argument of
\NewFileListingCommand); see the \prefixfilelisting command, below, for an example.

3. Commands to execute before the listing is started (e.g. to add vertical white space).

4. Initialisation commands, executed inside the scope of the listing (e.g. font/margin setup).

5. The name of a macro (receiving one argument) which will be used to typeset each line of input.

6. Commands to execute after the listing is completed.

The first argument of the newly defined macro always denotes the name of the file to include.

Example. Using the auxiliary functions for the listing environment, the built-in filelisting

command can be defined as follows:

\NewFileListingCommand{\filelisting}{1}{\prelistingskip}%

{\listingfont}{\ListingTypesetLine}{\postlistingskip}

Example. The following command defines a macro to read a file and to prefix every line of the
resulting listing with a given string.

\newcommand{\pfxtypeset}[1]{\noindent\hskip\listingindent\strut

\pfx#1\par\penalty\listingpenalty}

\NewFileListingCommand{\prefixfilelisting}{2}{\prelistingskip}%

{\listingfont\def\pfx{#2}}{\pfxtypeset}{\postlistingskip}

4 Implementation

This section describes the internal implementation of the jvlisting package. In order to avoid
name clashes with other packages, the names of all internal macros defined in this package start
with the prefix jvl@. The following is the preamble for the package file.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{jvlisting}[2011/11/17 v0.7 Formatted Program Listings]

4.1 Processing the Lines of Input

We start by provinding a macro \jvl@iterlines which can be used to iterate over all lines of
input until a line containing some marker is found. The marker is given as argument #1 to the
\jvl@iterlines macro. Each line is processed by prepending \jvl@dropempty (for the first and
last line) or \jvl@tryhook (for all other lines).

\def\jvl@iterlines#1{\expandafter\jvl@iterla\expandafter{#1}{\jvl@dropempty}}

{\obeylines\gdef\jvl@iterla#1#2#3

{\def\jvl@testmarker##1#1{}%

\expandafter\def\expandafter\w\expandafter{\jvl@testmarker#3#1}%

\ifx\w\empty%

\def\next{#2{\jvl@iterla{#1}{\jvl@tryhook}}#3

4

}%

\else%

% special treatment for the last line

\def\y##1#1##2#1{\jvl@dropempty{\jvl@end##2}##1

}%

\def\next{\y#3#1}%

\fi\next}}

The next step in processing is to drop the first line (whatever comes directly after the opening
begin statement) and the last line (whatever comes directly before the closing end statement), if
these lines consist only of white space.

\def\jvl@dropempty#1{\jvl@dropa{#1}{}}

{\obeylines\gdef\jvl@dropa#1#2#3{\ifx

#3\def\next{#1}%

\else%

\if#3 \def\next{\jvl@dropa{#1}{#2#3}}\else%

\def\next{\jvl@tryhook{#1}#2#3}\fi%

\fi\next}}

Next we try to apply the \ListingStartHook.

\def\jvl@tryhook#1{\ifx\ListingStartHook\undefined

\def\next{\jvl@countspaces{#1}}%

\else

\def\jvl@trya{\let\ListingStartHook\undefined\jvl@countspaces{#1}}%

\def\next{\ListingStartHook{\jvl@trya}}%

\fi

\next}

Next we determine the indentation level of the current line by expanding TAB characters and
then counting spaces. The result is stored in the scratch counter @tempcnta.

\def\jvl@countspaces#1{\@tempcnta=0\jvl@counta{#1}}

{\catcode‘\^^I=12

\gdef\jvl@counta#1#2{\if^^I#2%

\advance\@tempcnta by8\divide\@tempcnta by8\multiply\@tempcnta by8

\def\next{\jvl@counta{#1}}%

\else

\expandafter\if\noexpand#2 %

\advance\@tempcnta by1

\def\next{\jvl@counta{#1}}%

\else

\def\next{\jvl@fixspaces{#1}#2}%

\fi

\fi\next}}

Using the value in @tempcnta, we fix the indentation by first subtracting the common indentation
level (stored in \jvl@idt) and then inserting the required number of spaces (using \space).

\newcount\jvl@idt \jvl@idt=\m@ne

{\obeylines\gdef\jvl@fixspaces#1#2{\ifx

#2\else%

\ifnum\jvl@idt<0%

\jvl@idt=\@tempcnta%

\else%

\ifnum\@tempcnta<\jvl@idt\jvl@idt=\@tempcnta\fi%

\fi\fi\jvl@fixa{#1}#2}}

\def\jvl@fixa#1{\ifnum\@tempcnta>\jvl@idt

\advance\@tempcnta by\m@ne

\def\next{\jvl@fixa{#1}\space}%

\else

\def\next{\jvl@output{#1}}%

\fi\next}

5

Finally, we apply the output function \jvl@typeset to the processed line and starting processing
of the next line.

{\obeylines\gdef\jvl@output#1#2

{\jvl@typeset{#2}#1}}

The symbol \jvl@typeset will be defined inside the \begin{listing} command; since neested
listings are not possible, using a global name for the output function is no problem.

4.2 Defining Listing Environments

In order to allow for verbatim printing, the macro jvl@fixparsing switches off the special meaning
of most characters. Some care is needed to avoid problems with spaces and hyphenation.

{\catcode‘\ =\active%

\gdef\jvl@obeyspaces{\frenchspacing\catcode‘\ =\active\let \space}}

\def\jvl@fixparsing{\let\do\@makeother\dospecials\catcode‘\^^I=12

\jvl@obeyspaces\hyphenchar\font\m@ne}

Since the \hyphenchar setting is global, we save save the value of hyphenchar before entering
the listing environment end restore the original setting at the end.

\newcount\jvl@tmphyphenchar

\def\jvl@begingroup{\jvl@tmphyphenchar=\hyphenchar\font

\begingroup \parskip0pt \advance\leftskip by\@totalleftmargin}

\def\jvl@endgroup{\endgroup \hyphenchar\font=\jvl@tmphyphenchar}

Given the code above, we can now define the \NewListingEnvironment macro. Some care is
needed when constructing the marker for use in the \jvl@iterlines macro, because the text we
need to match uses category code 12 (“other”) for the characters \, { and }.

\begingroup

\catcode‘|=0 \catcode‘[=1 \catcode‘]=2

\catcode‘\{=12 \catcode‘\}=12 \catcode‘\\=12

|gdef|jvl@makemarker#1[%

|expandafter|gdef|csname jvl@@#1marker|endcsname[\end{#1}]]

|endgroup

\def\NewListingEnvironment#1#2#3#4#5#6{\jvl@makemarker{#1}%

\expandafter\newcommand\csname #1\endcsname[#2]{#3\jvl@begingroup

#4\def\jvl@end{\end{#1}}\let\jvl@typeset=#5%

\jvl@fixparsing\obeylines

\expandafter\def\expandafter\jvl@start\expandafter{%

\expandafter\jvl@iterlines\csname jvl@@#1marker\endcsname}%

\let\next\jvl@start

\next}%

\expandafter\gdef\csname end#1\endcsname{\jvl@endgroup #6}}

4.3 Reading Listings from File

When reading listings from a file, we get the lines terminated by ^^M characters. The following
function is a replacement for \jvl@iterlines, used to read lines from a file and to strip the trailing
^^M characters:

\newread\jvl@fileinput

\def\jvl@iterfile{\read\jvl@fileinput to\l

\ifeof\jvl@fileinput

\let\next\relax

\else

\expandafter\jvl@iterfa\l

\let\next\jvl@iterfile

\fi\next}

{\catcode‘\^^M=12

\gdef\jvl@iterfa#1^^M{\jvl@iterfb{#1}}}

6

{\obeylines\gdef\jvl@iterfb#1{\jvl@tryhook{\relax}#1

}}

In analogy to \NewListingEnvironment, the following macro is used to define new functions for
listing file contents.

\def\NewFileListingCommand#1#2#3#4#5#6{%

\ifnum#2<1

\PackageError{jvlisting}{%

Invalid number of arguments: ‘#2’

}{%

The second argument to \protect\NewFileListingCommand\space must be at

least 1.

}%

\fi

\newcommand{#1}[#2]{#3\jvl@begingroup

#4\let\jvl@typeset=#5%

\jvl@fixparsing\catcode‘\^^M=12

\openin\jvl@fileinput=##1\jvl@iterfile\closein\jvl@fileinput

\jvl@endgroup#6%

\ignorespaces

}%

}

4.4 Finishing Touches

The following definitions provide default values for the customisable parameters of the listing

environment.

\newskip\listingskipamount \listingskipamount=1ex

\newdimen\listingindent \listingindent=2em

\newcount\prelistingpenalty \prelistingpenalty=100

\newcount\listingpenalty \listingpenalty=500

\newcount\postlistingpenalty \postlistingpenalty=-50

Finally, we define the default font for use in listings. Some care is needed to avoid problems with
ligatures like ?‘. We break such ligatures by making ‘ and active character. For use in file listings
we also provide \DisableLigatureFix to (temporarily) disable this fix.

{\catcode‘\‘=\active\gdef‘{\relax\lq}%

\gdef\DisableLigatureFix{\def‘{\lq}}}

\def\normallistingfont{\normalfont\ttfamily\catcode‘\‘=\active}

7

	Basic Usage
	Extending the listing Environment
	Extending the filelisting Command
	Implementation
	Processing the Lines of Input
	Defining Listing Environments
	Reading Listings from File
	Finishing Touches

