The songs package*

Kevin W. Hamlen
September 21, 2018

Abstract

The songs package produces songbooks that contain lyrics and chords
(but not full sheet music). It allows lyric books, chord books, overhead slides,
and digital projector slides to all be maintained and generated from a single
KETEX source document. Automatic transposition, guitar tablature diagrams,
handouts, and a variety of specialized song indexes are supported.

1 Introduction

The songs IWTEX package produces books of songs that contain lyrics and (option-
ally) chords. A single source document yields a lyric book for singers, a chord book
for musicians, and overhead or digital projector slides for corporate singing.
The software is especially well suited for churches and religious fellowships
desiring to create their own books of worship songs. Rather than purchasing a
fixed hymnal of songs, the songs package allows worship coordinators to maintain
a constantly evolving repertoire of music to which they can add and remove songs
over time. As the book content changes, the indexes, spacing, and other formatting
details automatically adjust to stay consistent. Songs can also be quickly selected
and arranged for specific events or services through the use of scripture indexes,
automatic transposition, and handout and slide set creation features.

2 Terms of Use

The songs package is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
A copy of the license can be found in §14}

*This manual documents songs v3.1, dated 2018/09/12, © 2018 Kevin W. Hamlen, and
distributed under version 2 the GNU General Public License as published by the Free Software
Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License in for
details. A copy of the license can also be obtained by writing to the Free Software
Foundation, Inc., 51 Franklin Street, 5th Floor, Boston, MA 02110-1301, USA.

This software is copyright (© 2018 Kevin W. Hamlen. For contact information
or the latest version, see the project webpage at:

http://songs.sourceforge.net

3 Sample Document

For those who would like to start making song books quickly, the following is a
sample document that yields a simple song book with one song. Starting from this
template, you can begin to add songs and customizations to create a larger book.
Instructions for compiling this sample song book follow the listing.

\documentclass{article}
\usepackage [chorded] {songs}

\noversenumbers
\begin{document}
\songsection{Worship Songs}

\begin{songs}{}
\beginsong{Doxology}[by={Louis Bourgeois and Thomas Ken},
sr={Revelation 5:13},
cr={Public domain.}]
\beginverse
\[G]Praise God, \[Dlfrom \[Em]Whom \[Bm]all \[Em]lbless\[Dlings \[Glflow;
\[G]Praise Him, all \[D]crea\[Em]tures \[Clhere \[G]lbe\[D]low;
\[Em]Praise \[D]Him \[Gla\[Dlbove, \[Glye \[Clheav’n\[D]ly \[Emlhost;
\[G]Praise Fa\[Em]ther, \[D]Son, \[Am]and \[G/B G/C]Ho\[D]ly \[G]Ghost.
\[CJA\ [G]men.
\endverse
\endsong
\end{songs}

\end{document}
To compile this book, run IXTEX (pdflatex is recommended):

pdflatex mybook.tex

(where mybook. tex is the name of the source document above). The final document
is named mybook. pdf if you use pdflatex or mybook.dvi if you use regular latex.

http://songs.sourceforge.net

Worship Songs

1 Doxology

Revelation 5:13
Louis Bourgeois and Thomas Ken

G D Em BmEmD
Praise God, from Whom all blessings
G
flow;
G D Em C GD

Praise Him, all creatures here below;

Em D GD GC DEm

Praise Him a - bove, ye heav’'nly host;

G Em D Am

Praise Father, Son, and

B D
I’CI;C(G:/C ly ghost.
C G
A - men.

Public domain.

The LORD is my rock and my fortress
and my deliverer,
my God, my rocKk, in whom I take
refuge,
my shield, and the fiorn of my
salvation, my stronghold.
I call upon the LORD, who is worthy to
be praised,

and I am saved from my enemies.

The cords of death encompassed me;
the torrents of destruction assailed
me;
the cords of Sheol entangled me;
the snares of death confronted me.

In my distress I called upon the LORD;
to my God I cried for help.
From his temple he heard my voice,
and my cry to him reached fis ears.
Psalm 18:2-6

2 A Mighty Fortress Is

Our God

Martin Luther

C*m B7 E
A mighty Fortress is our God,
E7 A
A bulwark never fail - ing.
C*tm B7 E
Our helper He, amid the flood
E7A
Of mortal ills prevailing.
. B7sus4 B7 E
For still our an - cient foe

E/G* F*m
Doth seek to work us woe;
E
His craft and pow’r are great,
m Cc#
And, armed with cruel hate,
A E7 A
On earth is not his e - qual.
A C¥m B7
Did we in our own strength confide,
E7 A

Our striving would be los - ing.

C*m B7 E

Were not the right Man on our side,

D E7 A
The Man of God’s own choosing.

B7sus4 B7 E

Dost ask who that may b
A E/G* Ftm

Christ Jesus, it is He;

Br E
Lord Sabaoth His Name,
m c#
From age to age the same;

D A E7 A
And He must win the bat-tle.

Public Domain.

Figure 1: Sample page from a chord book

lyric
chorded
slides
rawtext

\chordson
\chordsoff
\slides

nomeasures
showmeasures

\measureson
\measuresoff

transposecapos

Note that compiling a document that includes indexes requires extra steps.
See for details.

A copy of the first page of a sample song section is shown in Figure[l] The
page shown in that figure is from a chorded version of the book. When generating
a lyric version, the chords are omitted. See §4] for information on how to generate
different versions of the same book.

4 Initialization and Options

Each BTEX document that uses the songs package should contain a line like the
following near the top of the document:

\usepackage [(options)]{songs}
Supported (options) include the following:

Output Type. The songs package can produce four kinds of books: lyric books,
chord books, books of overhead slides, and raw text output. You can specify which
kind of book is to be produced by specifying one of lyric, chorded, slides, or
rawtext as an option. The slides and chorded options can be used together to
create chorded slides. If no output options are specified, chorded is the default.

Lyric books omit all chords, whereas chord books include chords and additional
information for musicians (specified using [\musicnote|). Books of overhead slides
typeset one song per page in a large font, centered.

Raw text output yields an ascii text file named (jobname).txt (where
(jobname) is the root filename) containing lyrics without chords. This can be
useful for importing song books into another program, such as a spell-checker.

Chords can be turned on or off in the middle of the document by using the
\chordson or \chordsoff macros.

Slides mode can be activated in the middle of the document by using the
\slides macro. For best results, this should typically only be done in the document
preamble or at the beginning of a fresh page.

Measure Bars. The songs package includes a facility for placing measure bars
in chord books (see . To omit these measure bars, use the nomeasures option;
to display them, use the showmeasures option (the default). Measure bars can
also be turned on or off in the middle of the document by using the \measureson
or \measuresoff macros.

Transposition. The transposecapos option changes the effect of the
macro. Normally, using \capo{(n)} within a song environment produces a textual
note in chord books that suggests the use of a guitar capo on fret (n). However, when
the transposecapos option is active, these textual notes are omitted and instead
the effect of \capo{(n)} is the same as for \transposel{(n)}. That is, chords
between the macro and the end of the song are automatically transposed
up by (n) half-steps. This can be useful for adapting a chord book for guitarists to

noindexes
\indexeson
\indexesoff
nopdfindex

noscripture
\scriptureon
\scriptureoff

noshading

\includeonlysongs

songs

one that can be used by pianists, who don’t have the luxury of capos. See
and §7] for more information on the Ncapo] and \transpose| macros.

Indexes. The noindexes option suppresses the typesetting of any in-document
indexes. Display of indexes can also be turned on or off using the \indexeson
and \indexesoff macros.

PDF bookmark entries and hyperlinks can be suppressed with the nopdfindex
option. For finer control of PDF indexes, see

Scripture Quotations. The noscripture option omits scripture quotations
(see §8.2)) from the output. You can also turn scripture quotations on or off in the
middle of the document by using \scriptureon or \scriptureoff, respectively.

Shaded Boxes. The noshading option causes all shaded boxes, such as those
that surround song numbers and textual notes, to be omitted. You might want
to use this option if printing such shaded boxes causes problems for your printer
or uses too much ink.

Partial Song Sets. Often it is useful to be able to extract a subset of songs from
the master document—e.g. to create a handout or set of overhead slides for a specific
worship service. To do this, you can type \includeonlysongs{(songlist)} in the
document preamble (i.e., before the \begin{document} line), where (songlist) is a
comma-separated list of the song numbers to include. For example,

\includeonlysongs{37,50,2}

creates a document consisting only of songs 37, 50, and 2, in that order.
Partial books generated with \includeonlysongs omit all scripture quota-
tions (§8.2)), and ignore uses of Nnextcol] \brk] \sclearpage| and \scleardpage|
between songs unless they are followed by a star (e.g., \nextcolj). To force a
column- or page-break at a specific point in a partial book, add the word nextcol,
brk, sclearpage, or scleardpage at the corresponding point in the (songlist).
The \includeonlysongs macro only reorders songs within each envi-
ronment (see , not between different environments. It also cannot be

used in conjunction with the option.

5 Songs

5.1 Beginning a Song

Song Sets. Songs are contained within songs environments. Each songs en-
vironment begins and ends with:

\begin{songs}{(indezes)}

iend{songs}

\beginsong

\endsong

by

(indexes) is a comma-separated list of index (id)’s (see §10.1)—one identifier for
each index that is to include songs in this song set. Between the \begin{songs}
and \end{songs} lines of a song section only songs (see below) or inter-song
environments (see §8) may appear. No text in a songs environment may appear
outside of these environments.

Songs. A song begins and ends with:
\beginsong{(titles)} [{otherinfo)]

\endsong

Songs should appear only within environments (see above) unless you are
supplying your own page-builder (see .

In the line, (titles) is one or more song titles separated by \\. If
multiple titles are provided, the first is typeset normally atop the song and the
rest are each typeset in parentheses on separate lines.

The [(otherinfo)] part is an optional comma-separated list of key-value pairs
(keyvals) of the form (key)=(value). The possible keys and their values are:

by={(authors)} authors, composers, and other contributors
cr={{copyright)} copyright information

li={(license)} licensing information

sr={(refs)} related scripture references
index={(lyrics)} an extra index entry for a line of lyrics
ititle={(title)} an extra index entry for a hidden title

For example, a song that begins and ends with

\beginsong{Titlel \\ Title2}[by={Joe Smith}, sr={Job 3},
cr={\copyright~2018 XYZ.}, li={Used with permission.}]
\endsong

looks like

1 Titlel
(Title2)

Job 3
Joe Smith

@© 2018 XYZ. Used with permission.

The four keyvals used in the above example are described in detail in the
remainder of this section; the final two are documented in §10.2] You can also

create your own keyvals (see §11.8).

Song Authors. The by={(authors)} keyval lists one or more authors, composers,
translators, etc. An entry is added to each author index associated with the current
songs| environment for each contributor listed. Contributors are expected to be
separated by commas, semicolons, or the word and. For example:

cr=

li=
\setlicense

sSIr=

by={Fred Smith, John Doe, and Billy Bob}

Words separated by a macro-space (\.) or tie (~) instead of a regular space are
treated as single words by the indexer. For example, The Vienna, Boys’ Choir
is indexed as “Choir, The Vienna Boys’” but The Vienna\ Boys’_ Choir is
indexed as “Vienna Boys’ Choir, The”.

Copyright Info. The cr={(copyright)} keyval specifies the copyright-holder of
the song, if any. For example:

cr={\copyright~2000 ABC Songs, Inc.}
Copyright information is typeset in fine print at the bottom of the song.

Licensing Info. Licensing information is provided by li={(license)}, where
(license) is any text. Licensing information is displayed in fine print under
the song just after the copyright information (if any). Alternatively, writing
\setlicense{(license)} anywhere between the [\beginsong|and [\endsong]lines is
equivalent to using 1i={(license)} in the [\beginsong] line.

When many songs in a book are covered by a common license, it is usually
convenient to create a macro to abbreviate the licensing information. For exam-
ple, if your organization has a music license from Christian Copyright Licensing
International with license number 1234567, you might define a macro like

\newcommand{\CCLI}{(CCLI \#1234567)%}

Then you could write 1i=\CCLI in the line of each song covered by
CCLI.

Scripture References. The songs package has extensive support for scripture
citations and indexes of scripture citations. To cite scripture references for the song,
use the keyval sT={(refs)}, where (refs) is a list of scripture references. Index entries
are added to all scripture indexes associated with the current environment
for each such reference. The songidx index generation script (see expects
(refs) to be a list of references in which semicolons are used to separate references to
different books, and commas are used to separate references to to different chapters
and verses within the same book. For example, one valid scripture citation is

sr={John 3:16,17, 4:1-5; Jude 3}

The full formal syntax of a valid (refs) argument is given in Figure In
those syntax rules, (chapter) and (verse) stand for arabic numbers denoting a valid
chapter number for the given book, and a valid verse number for the given chapter,
respectively. Note that when referencing a book that has only one chapter, one
should list only its verses after the book name (rather than 1:(verses)).

(refs) —> (nothing) | (ref) sui(ref) - -3 fref)
(ref) — (many-chptr-book)(chapters) | (one-chptr-book) (verses)
(many-chptr-book) — Genesis | Exodus |Leviticus | Numbers | ...
one-chptr-book) — Obadiah | Philemon |2 John |3 John | Jude
hptr-book
(chapters) — (chref),(chref),. .., (chref)
(chref) — (chapter) | (chapter)={chapter) | (chapter): (verses) |

(chapter) : (verse)=(chapter) : (verse)
(verses) — (vref), (vref),. .., {vref)

(vref) — (verse) | (verse)=(verse)

Figure 2: Formal syntax rules for song scripture references

5.2 Verses and Choruses

\beginverse Starting A Verse Or Chorus. Between the[\beginsong|land[\endsong]lines of
\endverse a song can appear any number of verses and choruses. A verse begins and ends with:
\beginchorus

\beginverse
\endchorus

\endverse

and a chorus begins and ends with:

\beginchorus

\endchorus

Verses are numbered (unless [\noversenumbers| has been used to suppress verse
numbering) whereas choruses have a vertical line placed to their left.

To create an unnumbered verse, begin the verse with \beginversex* instead.
This can be used for things that aren’t really verses but should be typeset like a
verse (e.g. intros, endings, and the like). A verse that starts with \beginverse*
should still end with \endverse (not \endversex).

Within a verse or chorus you should enter one line of text for each line of
lyrics. Each line of the source document produces a separate line in the resulting
document (like IXTEX’s \obeylines macro). Lines that are too long to fit are
wrapped with hanging indentation of width \parindent.

5.3 Chords

\[Between the \beginverse| and \endverse] lines, or between the
and [\endchorus] lines, chords can be produced using the macro \ [{chordname)].
& Chords only appear in chord books; they are omitted from lyric books. The
(chordname) may consist of arbitrary text. To produce sharp and flat symbols,

use # and & respectively.

Any text that immediately follows the \ [1 macro with no intervening white-
space is assumed to be the word or syllable that is to be sung as the chord is struck,
and is therefore typeset directly under the chord. For example:

EY Am

\ [E&]peace and \[Am]joy produces peace and joy
If whitespace (a space or (return)) immediately follows, then the chord name be
typeset without any lyric text below it, indicating that the chord is to be struck
between any surrounding words. For example:

ED Am
\ [E&]peace and \[Am] joy produces peace and joy
If the lyric text that immediately follows the chord contains another chord,

and if the width of the chord name exceeds the width of the lyric text, then
hyphenation is added automatically. For example:

F#sus4 A
\ [F#sus4]e\[A] ternal produces e - ternal

Sequences of chords that sit above a single word can be written back-to-back
with no intervening space, or as a single chord:

A B Em
\ [AI\ [BI\ [Em] joy produces joy

ABEm
\[A B Em]joy produces joy

The only difference between the two examples above is that the chords in the
first example can later be replayed separately (see whereas the chords in the
second example can only be replayed as a group.

You can explicitly dictate how much of the text following a chord macro is
to appear under the chord name by using braces. To exclude text that would
normally be drawn under the chord, use a pair of braces that includes the chord
macro. For example:

{\[G Ale}ternal produces e - ternal

(Without the braces, the syllables “ternal” would not be pushed out away from
the chord.) This might be used to indicate that the chord transition occurs on
the first syllable rather than as the second syllable is sung.

Contrastingly, braces that do not include the chord itself can be used to include
text under a chord that would otherwise be excluded. For example:

Gmatj7sus4
\ [Gmaj7sus4]{th’ eternall} produces th’ efernal

Without the braces, the word “eternal” would be pushed out away from the chord
so that the chord would appear only over the partial word “th’”.

\nolyrics

\DeclareLyricChar

\DeclareNonLyric

\DeclareNoHyphen

\MultiwordChords

Chords Without Lyrics. Sometimes you may want to write a line of chords
with no lyrics in it at all, such as for an instrumental intro or solo. To make
the chords in such a line sit on the baseline instead of raised above it, use the
\nolyrics macro. For example:

{\nolyrics Intro: \[G] \[A] \[D]} produces Intro: G A D

Note the enclosing braces that determine how long the effect should last. Multiple
lines can be included in the braces. Instrumental solos should typically not appear
in lyric books, so such lines should usually also be surrounded by
and \fi (see §11.4)).

Symbols Under Chords. If you are typesetting songs in a language whose
alphabet contains symbols that IXTEX treats as punctuation, you can use the
\DeclareLyricChar macro to instruct the songs package to treat the symbol
as non-chord-ending, so that it is included under chords by default just like an
alphabetic character.

\DeclareLyricChar{(token)}

Here, (token) must be a single TEX macro control sequence, active character,
letter (something TEX assigns catcode 11), or punctuation symbol (something TEX
assigns catcode 12). For example, by default,

Fmaj7
\[Fmaj7]s\dag range produces s = frange

because \dag is not recognized as an alphabetic symbol; but if you first type,
\DeclareLyricChar{\dag}
then instead you will get:

Fmaj7
\[Fmaj7]s\dag range produces sfrange

Likewise, you can type
\DeclareNonLyric{(token)}

to reverse the above effect and force a token to be lyric-ending. Such tokens are
pushed out away from long chord names so that they never fall under a chord,
and hyphenation is added to the resulting gap.

To declare a token to be lyric-ending but without the added hyphenation,
use \DeclareNoHyphen{(foken)} instead. Such tokens are pushed out away from
long chord names so that they never fall under the chord, but hyphenation is not
added to the resulting gap.

Extending Chords Over Adjacent Words. The \MultiwordChords macro

forces multiple words to be squeezed under one chord by default. Normally a long
chord atop a short lyric pushes subsequent lyrics away to make room for the chord:

10

\shrp
\flt

Gmaj7sus4
\[Gmaj7sus4]my life produces my life

But if you first type \MultiwordChords, then instead you get the more compact:

Gma{' 7sus4
\[Gmaj7susd4]my life produces my lite

Authors should exercise caution when using \MultiwordChords because including
many words under a single chord can often produce output that is ambiguous or
misleading to musicians. For example,

FGAm

\[F G Am]lme free produces me free

This might be misleading to musicians if all three chords are intended to be played
while singing the word “me.” Liberal use of braces is therefore required to make
\MultiwordChords produce good results, which is why it isn’t the default.

Accidentals Outside Chords. Sharp and flat symbols can be produced with #
and & when they appear in chord macros, but if you wish to produce those symbols
in other parts of the document, you must use the \shrp and \flt macros. For
example, to define a macro that produces a C# chord, use:

\newcommand{\Csharp}{C\shrp}

5.4 Replaying Chords and Choruses

Many songs consist of multiple verses that use the same chords. The songs package
simplifies this common case by providing a means to replay the chord sequence
of a previous verse without having to retype all the chords. To replay a chord
from a previous verse, type a hat symbol () anywhere you would otherwise use
a chord macro (\[1). For example,

\[G]This is the \[C]first \[G]verse.

The “second verse

produces

has the same “chords.

This is the first verse.
The second verse has the same chords.

Normal chords can appear amidst replayed chords without disrupting the
sequence of chords being replayed. Thus, a third verse could say,

11

\memorize

\newchords

The “third verse ~has a \[Cmlnew “chord.

to produce

C CmG

The third verse has a new chord.

Replaying can be used in combination with automatic transposition to produce
modulated verses. See §7] for an example.

By default, chords are replayed from the current song’s first verse, but you
can replay the chords of a different verse or chorus by saying \memorize at the
beginning of any verse or chorus whose chords you want to later replay. Subsequent
verses or choruses that use [] replay chords from the most recently memorized
verse or chorus.

Selective Memorization. It is also possible to inject unmemorized chords into
a memorized verse so that they are not later replayed. To suppress memorization
of a chord, begin the chord’s name with a hat symbol. For example,

[\beginverse\memorize|
The \[G]lthird \[Clchord will \["Cm]lnot be re\[G]lplayed.
When “replaying, the “unmemorized chord is “skipped.

produces

G C Cm G
The third chord will not be replayed.

G C . G
When replaying, the unmemorized chord is skipped.

This is useful when the first verse of a song has something unique, like an intro that
won’t be repeated in subsequent verses, but has other chords that you wish to replay.

Memorizing Multiple Chord Sequences. By default, the songs package only
memorizes one sequence of chords at a time and [replays chords from that most
recently memorized sequence. However, you can memorize and replay multiple
independent sequences using the macros described in the following paragraphs.

Memorized or replayed chord sequences are stored in chord-replay registers.
To declare a new chord-replay register, type

\newchords{(regname)’}

where (regname) is any unique alphabetic name.
Once you've declared a register, you can memorize into that register by

providing the (regname) as an optional argument to

12

\replay

\repchoruses

\norepchoruses

\brk

[(regname)]

Memorizing into a non-empty register replaces the contents of that register with
the new chord sequence.
To replay chords from a particular register, type

\replay [(regname)]

Subsequent uses of [7] reproduce chords from the sequence stored in register
(regname).

Register contents are global, so you can memorize a chord sequence from one
song and replay it in others. You can also use \replay multiple times in the same
verse or chorus to replay a sequence more than once.

Replaying Choruses. When making overhead slides, it is often convenient to
repeat the song’s chorus after the first verse on each page, so that the projector-
operator need not flip back to the first slide each time the chorus is to be sung.
You can say \repchoruses to automate this process. This causes the first chorus
in each subsequent song to be automatically repeated after the first verse on each
subsequent page of the song (unless that verse is already immediately followed by
a chorus). If the first chorus is part of a set of two or more consecutive choruses,
then the whole set of choruses is repeated. (A set of choruses is assumed to consist
of things like pre-choruses that should always be repeated along with the chorus.)
Choruses are not automatically inserted immediately after unnumbered verses (i.e.,
verses that begin with) Unnumbered verses are assumed to be
bridges or endings that aren’t followed by a chorus.

Writing \norepchoruses turns off chorus repetition for subsequent songs.

If you need finer control over where replayed choruses appear, use the condi-
tional macros covered in instead of \repchoruses. For example, to manually
insert a chorus into only slide books at a particular point (without affecting other
versions of your book), you could write:

\ifslides|

\fi

and copy and paste the desired chorus into the middle.

5.5 Line and Column Breaks

Line Breaking. To cause a long line of lyrics to be broken in a particular place,
put the \brk macro at that point in the line. This does not affect lines short
enough to fit without breaking. For example,

13

\nextcol
\sclearpage
\scleardpage

\echo

\beginverse

This is a \brk short line.

But this is a particularly long line of lyrics \brk that will
need to be wrapped.

\endverse

produces

This is a short line.
But this is a particularly long line of lyrics
that will need to be wrapped.

Column Breaks Within Songs. To suggest a column break within a verse or
chorus too long to fit in a single column, use \brk on a line by itself. If there are
no \brk lines in a long verse, it is broken somewhere that a line does not wrap. (A
wrapped line is never divided by a column break.) If there are no \brk lines in a
long chorus, it overflows the column, yielding an overfull vbox warning.

Column Breaks Between Songs. To force a column break between songs, use
\nextcol, \brk, \sclearpage, or \scleardpage between songs. The \nextcol
macro ends the column by leaving blank space at the bottom. The \brk macro
ends the current column in lyric books by stretching the preceeding text so that the
column ends flush with the bottom of the page. (In non-lyric books \brk is identical
to \nextcol.) The \sclearpage macro is like \nextcol except that it shifts to the
next blank page if the current page is nonempty. The \scleardpage macro is like
\sclearpage except that it shifts to the next blank even-numbered page in two-
sided documents. Column breaks usually need to be in different places in different
book types. To achieve this, use a conditional block from For example,

Nifchorded\else\ifslidesN\else\brk\fi\fi

forces a column break only in lyric books but does not affect chord books or books
of overhead slides.

When a partial list of songs is being extracted with [\includeonlysongs| \brk,
\nextcol, \clearpage, and \cleardpage macros between songs must be followed
by a star to have any effect. To force a column-break at a specific point in a partial
book, add the word nextcol, brk, clearpage, or cleardpage at the corresponding
point in the argument to [\includeonlysongs]|

5.6 Echoes and Repeats

Echo Parts. To typeset an echo part, use \echo{(lyrics and chords)}. Echo
parts are parenthesized and italicized. For example,

G A
Alle\[G]1luia! \echo{Alle\[A]luia!} produces Alleluia! (Alleluia!)

14

\rep

\1lrep
\rrep

\measurebar

\meter

\mbar

\textnote
\musicnote

Repeated Lines. To indicate that a line should be sung multiple times by all
singers, put \rep{(n)} at the end of the line. For example,

Alleluia! \rep{4} produces Alleluial (x4)

To indicate exactly where repeated parts begin and end, use \1rep and \rrep
to create begin- and end-repeat signs. For example,

G :
\lrep \[G]Alleluia!\rrep \rep{4} produces ‘:Alleluia!: (x4)

5.7 Measure Bars

Measure bars can be added to chord books in order to help musicians keep time
when playing unfamiliar songs. To insert a measure bar, type either \measurebar
or type the vertical pipe symbol (“|”). For example,

G
Allel|\[G]1luia produces Allelluia

In order for measure bars to be displayed, the option must be
enabled. Measure bars are only displayed by default in chord books.

The first measure bar in a song has meter numbers placed above it to indicate
the time signature of the piece. By default, these numbers are 4/4, denoting
four quarter notes per measure. To change the default, type \meter{(n)}{(d)}
somewhere after the line of the song but before the first measure bar,
to declare a time signature of (n) (d)th notes per measure.

You can also change meters mid-song either by using \meter in the middle
of the song or by typing \mbar{(n)}{(d)} to produce a measure bar with a time
signature of (n)/(d). For example,

\meter{6}{8}
\beginverse
|Sing to the |heavens, ye \mbar{4}{4}saints of |old!
\endverse
produces
|Sing to the heavens,ye'sahns of lold!

5.8 Textual Notes

Aside from verses and choruses, songs can also contain textual notes that provide
instructions to singers and musicians. To create a textual note that is displayed
in both lyric books and chord books, use:

\textnote{(text)}

To create a textual note that is displayed only in chord books, use:

15

\capo

\ch

\mch

\musicnote{(text)}
Both of these create a shaded box containing (text). For example,
\textnote{Sing as a two-part round.}

produces

Sing as a two-part round.

Textual notes can be placed anywhere within a song, either within verses and
choruses or between them.

Guitar Capos. One special kind of textual note suggests to guitarists a fret
on which they should put their capos. Macro \capo{(n)} should be used for this
purpose. It normally has the same effect as\musicnotef{capo (n)}; however, if the
[transposecapos|option is active then it instead has the effect of \transposel{(n)}.

See §7] for more information on automatic chord transposition.

5.9 Chords in Ligatures

This subsection covers an advanced topic and can probably be skipped by those
creating song books for non-professional use.

The [\ macro is the normal means by which chords should be inserted into a
song; however, a special case occurs when a chord falls within a ligature. Ligatures
are combinations of letters or symbols that TEX normally typesets as a single font
character so as to produce cleaner-looking output. The only ligatures in English
are: ff, fi, fl, ffi, and fil. Other languages have additional ligatures like & and ce.
Notice that in each of these cases, the letters are “squished” together to form a
single composite symbol.

When a chord macro falls inside a ligature, INTEX fails to compact the ligature
into a single font character even in non-chorded versions of the book. To avoid
this minor typographical error, use the \ch macro to typeset the chord:

\ch{{chord)(pre)X{ (post) }H (full)}

where (chord) is the chord text, (pre) is the text to appear before the hyphen
if the ligature is broken by auto-hyphenation, (post) is the text to appear after
the hyphen if the ligature is broken by auto-hyphenation, and (full) is the full
ligature if it is not broken by hyphenation. For example, to correctly typeset
\ [Gsus4]dif\[G]ficult, in which the G chord falls in the middle of the “ffi”
ligature, one should use:

G
di\ch{G}HfHfit{ffitcult produces difficult

This causes the “fi” ligature to appear intact yet still correctly places the G chord
over the second f. To use the \ch macro with a replayed chord name (see ,
use ~ as the (chord).

The \mch macro is exactly like the macro except that it also places a
measure bar into the ligature along with the chord. For example,

16

\gtab

G
di\mch{GHEfHfit{ffitcult produces diJﬁcult

places both a measure bar and a G chord after the first “f” in “difficult”, yet correctly
produces an unbroken “fi” ligature in copies of the book in which measure bars
are not displayed.

In the unusual case that a meter change is required within a ligature, this
can be achieved with a construction like:

§
G
\meter{6}{8}di\mch{GI}H{f}{fi}{ffitcult produces dif|ﬁcult

The macro sets the new time signature, which appears above the next
measure bar—in this case the measure bar produced by the \mch macro.

Chords and measure bars produced with [Jor [[] are safe to use in ligatures.
Thus, dif[fJficult requires no special treatment; it leaves the “fii” ligature intact
when measure bars are not being displayed.

6 Guitar Tablatures

Guitar tablature diagrams can be created by using the construct
\gtab{(chord)}{(fret): (strings): (fingering)}

where the (fret) and (fingering) parts are both optional (and you may omit any
colon that borders an omitted argument).

(chord) is a chord name to be placed above the diagram.

(fret) is an optional digit from 2 to 9 placed to the left of the diagram.

(strings) should be a series of symbols, one for each string of the guitar from
lowest pitch to highest. Each symbol should be one of: X if that string is not to
be played, 0 (zero or the letter O) if that string is to be played open, or one of 1
through 9 if that string is to be played on the given numbered fret.

(fingering) is an optional series of digits, one for each string of the guitar from
lowest pitch to highest. Each digit should be one of: 0 if no fingering information
is to be displayed for that string (e.g., if the string is not being played or is being
played open), or one of 1 through 4 to indicate that the given numbered finger
is to be used to hold down that string.

Here are some examples to illustrate:

A
X0 o
\gtab{A}{X02220:001230} produces 000
123
C#sus4
XX ®
\gtab{C#sus4}{4:XX3341} produces 4

17

\minfrets

\transpose

\gtab{B&}{X13331} produces

To create a barre chord in which one finger is extended across multiple strings,
use parentheses () or brackets [1 in the (strings) argument to group the barred
strings. Each such group will draw a barre on the lowest numbered fret it contains.
For example:

Cc7

X X

\gtab{C7}{X(3535X) :013140} produces

1314

By default, tablature diagrams always consist of at least 4 fret rows (more if
the (strings) argument contains a number larger than 4). To change the minimum
number of fret rows, change the value of \minfrets. For example, typing

\minfrets=1

causes tablature diagrams to have only as many rows are required to accommodate
the largest digit appearing in the (strings) argument.

Tablatures Within Macros Macros that produce tablatures must not bury
the colons that separate the (fret), (strings), and (fingering) arguments within
other macros, and it’s safest to always include both colons to avoid ambiguities
related to optional argument parsing. For example,

\newcommand{\mystrings}{X4412X}

\newcommand{\myfingers}{X3412X}

\newcommand{\mychord}{\gtabl{\shrp}{ : \mystrings: \myfingers}}
works as expected. But omitting the colon before \mystrings in the definition
of \mychord confuses into thinking \mystrings is the (fret) argument, and
writing code like \gtab{C\shrp}{\allargs} with \allargs defined to something
with colons results in an error, because it confuses into thinking that
\allargs is only the (strings) argument.

7 Automatic Transposition

You can automatically transpose some or all of the chords in a song up by (n)
half-steps by adding the line

\transpose{(n)}

somewhere between the song’s[\beginsong]line and the first chord to be transposed.
For example, if a song’s first chord is \ [D], and the line \transpose{2} appears
before it, then the chord appears as an E in the resulting document. Specifying a
negative number for (n) transposes subsequent chords down instead of up.

18

\preferflats
\prefersharps

\trchordformat

The \transpose macro affects all chords appearing after it until the Nendsong]|
line. If two \transpose macros appear in the same song, their effects are cu-
mulative.

When the [transposecapos| option is active, the macro acts like
\transpose. See for more information.

Enharmonics. When using to automatically transpose the chords
of a song, the songs package code chooses between enharmonically equivalent
names for “black key” notes based on the first chord of the song. For example,
if \transpose{1} is used, and if the first chord of the song is an E, then all
A chords that appear in the song are transcribed as B” chords rather than A#
chords, since the key of Frmajor (E transposed up by one half-step) has a flatted
key signature. Usually this guess produces correct results, but if not, you can
use either \preferflats or \prefersharps after the \transpose]line to force all
transcription to use flatted names or sharped names respectively, when resolving
enharmonic equivalents.

Modulated Verses. Automatic transposition can be used in conjunction with
chord-replaying (see §5.3) to produce modulated verses. For example,

[\beginverse\memorize|
\[F#]This is a \[B/F#]lmemorized \[F#]verse. \[E&T7]

[transposel{2}
: Sbeéinverse|

"This verse is "modulated up two “half-steps.

produces

F# B/F¥* F# [EV7
This is a memorized verse.
AP Db/Ap AP

This verse is modulated up two half-steps.

Both Keys. By default, when chords are automatically transposed using
only the transposed chords are printed. However, in some cases
you may wish to print the old chords and the transposed chords together so that
musicians playing transposing and non-transposing instruments can play from
the same piece of music. This can be achieved by redefining the \trchordformat
macro, which receives two arguments—the original chord name and the transposed
chord name, respectively. For example, to print the old chord above the new chord
above each lyric, define

\renewcommand{\trchordformat} [2] {\vbox{\hbox{#1}\hbox{#2}}}

19

\solfedge
\alphascale

\notenames

\notenamesin
\notenamesout

\transposehere

\notrans

Changing Note Names. In many countries it is common to use the solfedge
names for the notes of the scale (LA, SI, DO, RE, Ml, FA, SOL) instead of the
alphabetic names (A, B, C, D, E, F, G). By default, the transposition logic only
understands alphabetic names, but you can tell it to look for solfedge names by
typing \solfedge. To return to alphabetic names, type \alphascale.

You can use other note names as well. To define your own note names, type

\notenames{(nameA)H (nameB)}.. {(nameG)}

where each of (nameA) through (nameG) must consist entirely of a sequence of
one or more uppercase letters. For example, some solfedge musicians use T/ instead
of Sl for the second note of the scale. To automatically transpose such music, use:

\notenames{LA}{TI}{DO}{RE}{MI}{FA}{SOL}

The songs package can also automatically convert one set of note names to
another. For example, suppose you have a large song book in which chords have
been typed using alphabetic note names, but you wish to produce a book that uses
the equivalent solfedge names. You could achieve this by using the \notenamesin
macro to tell the songs package which note names you typed in the input file, and
then using \notenamesout to tell the songs package how you want it to typeset
each note name in the output file. The final code looks like this:

\notenamesin{A}{B}{C}H{D}{E}{F}{G}
\notenamesout{LA}{SI}{DO}{RE}MI}{FA}{SOL}

The syntaxes of \notenamesin and \notenamesout are identical to that of
(see above), except that the arguments of \notenamesout can consist
of any IXTEX code that is legal in horizontal mode, not just uppercase letters.
To stop converting between note names, use [\alphascale| [\solfedge| or
to reset all note names back to identical input and output scales.

Transposing Chords In Macros. The automatic transposition logic does not
find chord names that are hidden inside macro bodies. For example, if you
abbreviate a chord by typing,

\newcommand{\mychord}{F\shrp| sus4/d\shrp}

NEransposdf4)
\ [\mychord]

then the macro fails to transpose it; the resulting chord is still an
F#sus4/C# chord. To fix the problem, you can use \transposehere in your macros
to explicitly invoke the transposition logic on chord names embedded in macro
bodies. The above example could be corrected by instead defining:

\newcommand{\mychord}{\transposehere{F\shrp| sus4/0\shrp[}

Transposition can be suppressed within material that would otherwise be
transposed by using the \notrans macro. For example, writing

\transposehere{G = \notrans{G}}

20

\gtabtrans

intersong

intersong*

would typeset a transposed G followed by a non-transposed G chord. This does not

suppress note name conversion (see [\notenames|). To suppress both transposition
and note name conversion, just use braces (e.g., {G} instead of \notrans{G}).

Transposing Guitar Tablatures. The songs package cannot automatically
transpose tablature diagrams (see . Therefore, when automatic transposition is
taking place, only the chord names of macros are displayed (and transposed);
the diagrams are omitted. To change this default, redefine the \gtabtrans macro,
whose two arguments are the two arguments to For example, to display
original tablatures without transposing them even when transposition has been
turned on, write

\renewcommand{\gtabtrans} [2] {\gtab{\notrans{#1}}{#2}}

To transpose the chord name but not the diagram under it, replace Nnotrans{#1}
with simply #1 in the above. To restore the default behavior, write

\renewcommand{\gtabtrans} [2] {\transposeheref{#1}}

8 Between Songs

Never put any material directly into the top level of a environment. Doing
so will disrupt the page-builder, usually producing strange page breaks and blank
pages. To safely put material between songs, use one of the environments described
in this section.

8.1 Intersong Displays
To put column-width material between the songs in a [songs| environment, use
an intersong environment:

\begin{intersong}

\end{intersong}

Material contributed in an intersong environment is subject to the same column-
breaking rules as songs (see , but all other formatting is up to you. By default,
ETEX inserts interline glue below the last line of an intersong environment. To
suppress this, end the intersong content with \par\nointerlineskip.

To instead put page-width material above a song, use an intersong* envi-
ronment:

\begin{intersong*}

\end{intersong*}

21

songgroup

\beginscripture
\endscripture

\Acolon
\Bcolon

This starts a new page if the current page already has column-width material in it.

By default, all intersong displays are omitted when generating a partial book
with[\includeonlysongs| You can force them to be included whenever a particular
song is included by using a songgroup environment:

\begin{songgroup}

\end{songgroup}

Each songgroup environment may include any number of[intersong] [intersong|
or scripture quotations (see , but must include exactly one song. When using
[\includeonlysongs| the entire group is included in the book if the enclosed song
is included; otherwise the entire group is omitted.

8.2 Scripture Quotations

Starting a Scripture Quotation. A special form of intersong block typesets a
scripture quotation. Scripture quotations begin and end with

\beginscripture{(ref)}

\endscripture

where (ref) is a scripture reference that is typeset at the end of the quotation. The
(ref) argument should conform to the same syntax rules as for the (ref) arguments
passed to macros (see §5)).

The text of the scripture quotation between the \beginscripture and
\endscripture lines are parsed in normal paragraph mode. For example:

\beginscripture{James 5:13}

Is any one of you in trouble? He should pray. Is anyone happy?
Let him sing songs of praise.

\endscripture

produces

Is any one of you in trouble? He should
pray. Is anyone happy? Let him sing
songs of praise. James 5:13

Tuplets. To typeset biblical poetry the way it appears in most bibles, begin
each line with either \Acolon or \Bcolon. A-colons are typeset flush with the left
margin, while B-colons are indented. Any lines too long to fit are wrapped with
double-width hanging indentation. For example,

22

\strophe

\scripindent
\scripoutdent

\beginscripture{Psalm 1:1}

\Acolon Blessed is the man

\Bcolon who does not walk in the counsel of the wicked
\Acolon or stand in the way of sinners

\Bcolon or sit in the seat of mockers.

\endscripture

produces

Blessed is the man
who does not walk in the counsel
of the wicked
or stand in the way of sinners
or sit in the seat of mocKers.
Psalm 1:1

Stanzas. Biblical poetry is often grouped into stanzas or “strophes”, each of
which is separated from the next by a small vertical space. You can create that
vertical space by typing \strophe. For example,

\beginscripture{Psalm 88:2-3}

\Acolon May my prayer come before you;
\Bcolon turn your ear to my cry.

\strophe

\Acolon For my soul is full of trouble
\Bcolon and my life draws near the grave.
\endscripture

produces

May my prayer come before you;
turmn your ear to my cry.

For my soul is full of trouble
and my life draws near the grave.
Psalm 88:2-3

Indented Blocks. Some bible passages, such as those that mix prose and po-
etry, contain indented blocks of text. You can increase the indentation level
within a scripture quotation by using \scripindent and decrease it by using
\scripoutdent. For example,

23

\songsection
\songchapter

\newindex
\newauthorindex
\newscripindex

\beginscripture{Hebrews 10:17-18}

Then he adds:

\scripindent

\Acolon ‘‘Their sins and lawless acts

\Bcolon I will remember no more.’’

\scripoutdent

And where these have been forgiven, there is no longer any
sacrifice for sin.

\endscripture

produces

Then he adds:
“Their sins and lawless acts
I will remember no more.”
And where these have been forgiven,
there is no longer any sacrifice for sin.
Hebrews 10:17-18

9 Chapters and Sections

Song books can be divided into chapters and sections using all the usual macros
provided by WTEX (e.g., \chapter, \section, etc.) and by other macro packages.
In addition, the songs package provides two helpful built-in sectioning macros:

\songchapter{(title)}
\songsection{(title)}

which act like BTEX’s \chapter and \section commands except that they center
the (title) text in sans serif font and omit the chapter/section number. The
\songchapter macro only works in document classes that support \chapter (e.g.,
the book class).

10 Indexes

10.1 Index Creation

The songs package supports three kinds of indexes: indexes by title and/or notable
lyrics, indexes by author, and indexes by scripture reference. To generate an index,
first declare the index in the document preamble (i.e., before the \begin{document}
line) with one of the following:

\newindex{(id)}{ (filename)}
\newauthorindex{(id)}{(filename)}
\newscripindex{(id)}(filename)}

24

\showindex

index=

ititle=

The (id) should be an alphabetic identifier that will be used to identify the index
in other macros that reference it. The (filename) should be a string that, when
appended with an extension, constitutes a valid filename on the system. Auxiliary
files named (filename) .sxd and (filename) . sbx are generated during the automatic
index generation process. For example:

\newindex{mainindex}{idxfile}

creates a title index named “mainindex” whose data is stored in files named
idxfile.sxd and idxfile.sbx.
To display the index in the document, use:

\showindex [(columns)]{(title)}{(id)}

where (id) is the same identifier used in the [\newindex| \newauthorindex| or
[\newscripindex| command, and where the (title) is the title of the index, which
should consist only of simple text (no font or formatting macros, since those cannot
be used in pdf bookmark indexes). The [(columns)] part is optional; if specified
it dictates the number of columns if the index can’t fit in a single column. For
example, for a 2-column title index, write:

\showindex [2]{Index of Song Titles}{mainindex}

10.2 Index Entries

Every song automatically gets entries in the current environment’s list of
title index(es) (see . However, you can also add extra index entries for a song
to any index.

Indexing Lyrics. For example, title indexes often have entries for memorable
lines of lyrics in a song in addition to the song’s title. You can add an index entry
for the current song to the section’s title index(es) by adding index={(lyrics)} to

the song’s line. For example,

NoeginsongiDoxology}
[index={Praise God from Whom all blessings flowl}]

causes the song to be indexed both as “Dozxology” and as “Praise God from Whom
all blessings flow” in the section’s title index(es). You can use index= multiple
times in a line to produce multiple additional index entries. Index
entries produced with index={(lyrics)} are typeset in an upright font instead of
in italics to distinguish them from song titles.

Indexing Extra Song Titles. To add a regular index entry typeset in italics
to the title index(es), use:

ititle={(title)}

25

\indexentry
\indextitleentry

in the[\beginsong]line instead. Like[index=]keyvals, ititle= can be used multiple

times to produce multiple additional index entries.

You can also create index entries by saying \indexentry [(indexes)]1{(lyrics)}
(which creates an entry lik or \indextitleentry[(indexes)]{(title)}
(which creates an entry like [ititle=|). These two macros can be used anywhere
between the song’s [\beginsong| and [\endsong| lines, and can be used multiple
times to produce multiple entries. If specified, (indexes) is a comma-separated list
of the identifiers of indexes to which the entry should be added. Otherwise the
new entry is added to all of the title indexes for the current environment.

10.3 Compiling

As with a typical BTEX document, compiling a song book document with indexes
requires three steps. First, use BTEX (pdflatex is recommended) to generate
auxiliary files from the .tex file:

pdflatex mybook.tex

Second, use the songidx.lua script to generate an index for each index that
you declared with \newindex| \newauthorindex| or \newscripindex| The script
can be launched using LuaTgX, using the following syntax:

texlua songidx.lua [~b (canon).can] (filename).sxd (filename).sbx

where (filename) is the same (filename) that was used in the

\newauthorindex] or \newscripindex] macro. If the index was declared with

\newscripindex| then the -b option is used to specify which version of the bible

you wish to use as a basis for sorting your scripture index. The (canon) part can

be any of the .can files provided with the songidx distribution. If you are using a

Protestant, Catholic, or Greek Orthodox Christian bible with book names in En-

glish, then the bible.can canon file should work well. For other bibles, you should

create your own .can file by copying and modifying one of the existing .can files.
For example, if your song book .tex file contains the lines

Knewindex{titleidx}{titlfile}
N\newauthorindex{authidx}{authfile}

N\newscripindex{scripidx}{scrpfile}

then to generate indexes sorted according to a Christian English bible, execute:

texlua songidx.lua titlfile.sxd titlfile.sbx
texlua songidx.lua authfile.sxd authfile.sbx
texlua songidx.lua -b bible.can scrpfile.sxd scrpfile.sbx

Once the indexes are generated, generate the final book by invoking KTEX
one more time:

pdflatex mybook.tex

26

songnum

\thesongnum

\printsongnum

\songnumwidth

\nosongnumbers

versenum

\theversenum

11 Customizing the Book

11.1 Song and Verse Numbering

Song Numbering. The songnum counter defines the next song’s number. It is
set to 1 at the beginning of a environment and is increased by 1 after each
It can be redefined anywhere except within a song. For example,

\setcounter{songnum}{3}

sets the next song’s number to be 3.

You can change the song numbering style for a song section by redefining
\thesongnum. For example, to cause songs to be numbered Al, A2, etc., in the
current song section, type

\renewcommand{\thesongnum}{A\arabic{songnum}}

The expansion of \thesongnum must always produce plain text with no font
formatting or unexpandable macro tokens, since its text is exported to auxiliary
index generation files where it is sorted.

To change the formatting of song numbers as they appear at the beginning
of each song, redefine the \printsongnum macro, which expects the text yielded

by as its only argument. For example, to typeset song numbers in
italics atop each song, define

\renewcommand{\printsongnum} [1] {\it\LARGE#1}

The \songnumwidth length defines the width of the shaded boxes that contain
song numbers at the beginning of each song. For example, to make each such box
2 centimeters wide, you could define

\setlength{\songnumwidth}{2cm}

If \songnumwidth is set to zero, song numbers are not shown at all.

To turn off song numbering entirely, type \nosongnumbers. This inhibits
the display of the song number atop each song (but song numbers are still be
displayed elsewhere, such as in indexes). The same effect can be achieved by

setting to zero.

Verse Numbering. The versenum counter defines the next verse’s number. It

is set to 1 after each \beginsong]line and is increased by 1 after each \endverse]
(except if the verse begins with \beginverse). The versenum counter can be

redefined anywhere within a song. For example,

\setcounter{versenum}{3}

sets the next verse’s number to be 3.
You can change the verse numbering style by redefining \theversenum. For
example, to cause verses to be numbered in uppercase roman numerals, define

\renewcommand{\theversenum}{\Roman{versenum}}

27

\printversenum

\versenumwidth

\noversenumbers

\placeversenum

\lyricfont

\stitlefont

\versefont
\chorusfont
\meterfont
\echofont
\notefont

To change the formatting of verse numbers as they appear at the beginning of
each verse, redefine the \printversenum macro, which expects the text yielded

by as its only argument. For example, to typeset verse numbers
in italics, define

\renewcommand{\printversenum} [1] {\1t\LARGE#1.\ }

The \versenumwidth length defines the horizontal space reserved for verse
numbers to the left of each verse text. Verse text is shifted right by this amount.
For example, to reserve half a centimeter of space for verse numbers, define

\setlength{\versenumwidth}{0.5cm}

Verse numbers whose widths exceed \versenumwidth indent the first line of
the verse an additional amount to make room, but subsequent lines of the verse
are only indented by \versenumwidth.

To turn off verse numbering entirely, use \noversenumbers. This is equivalent
to saying

\renewcommand{\printversenum|} [1]{}
\setlength{\versenumwidth}{Opt}

The horizontal placement of verse numbers within the first line of each verse is
controlled by the \placeversenum macro. By default, each verse number is placed
flush-left. Authors interested in changing the placement of verse numbers should
consult of the implementation section for more information on this macro.

11.2 Song Appearance

Font Selection. By default, lyrics are typeset using the document-default font
(\normalfont) and with the document-default point size (\normalsize). You can
change these defaults by redefining \lyricfont. For example, to cause lyrics to
be typeset in small sans serif font, you could define

\renewcommand{\lyricfont}{\sffamily\small}

Song titles are typeset in a sans-serif, slanted font by default (sans-serif, upright
if producing slides), with minimal line spacing. You can change this default by
redefining \stitlefont. For example, to cause titles to be typeset in a roman
font with lines spaced 20 points apart, you could define

\renewcommand{\stitlefont}{
\rmfont\Large\baselineskip=20pt\lineskiplimit=0pt
}

You can apply additional font changes to verses, choruses, meter numbers,

echo parts produced with and textual notes produced with and
by redefining \versefont, \chorusfont, \meterfont, \echofont,
and \notefont, respectively. For example, to typeset choruses in italics, you
could define

\renewcommand{\chorusfont}{\it}

28

\notebgcolor
\snumbgcolor

\printchord

\sharpsymbol
\flatsymbol

\everyverse
\everychorus

\versesep

\afterpreludeskip
\beforepostludeskip

\baselineadj

The colors of shaded boxes containing textual notes and song numbers can be
changed by redefining the \notebgcolor and \snumbgcolor macros. For example:

\renewcommand{\notebgcolor}{red}

By default, chords are typeset in sans serif oblique (slanted) font. You can
customize chord appearance by redefining \printchord, which accepts the chord
text as its argument. For example, to cause chords to be printed in roman boldface
font, you could define

\renewcommand{\printchord} [1] {\rmfamily\bf#1}

Accidental Symbols. By default, sharp and flat symbols are typeset using
BTEX’s \# (#) and \flat (b) macros. Users can change this by redefining
\sharpsymbol and \flatsymbol. For example, to use \sharp (}) instead of #,
one could redefine \sharpsymbol as follows.

\renewcommand{\sharpsymbol}{\ensuremath{ " \sharp}}

Verse and Chorus Titles. The \everyverse macro is executed at the begin-
ning of each verse, and \everychorus is executed at the beginning of each chorus.
Thus, to begin each chorus with the word “Chorus:” one could type,

\renewcommand{\everychorus}{{\textnotef{Chorus:}}

Spacing Options. The vertical distance between song verses and song choruses
is defined by the skip register \versesep. For example, to put 12 points of space
between each pair of verses and choruses, with a flexibility of plus or minus 2
points, you could define

\versesep=12pt plus 2pt minus 2pt

The vertical distance between the song’s body and its prelude and postlude
material is controlled by skips \afterpreludeskip and \beforepostludeskip.
This glue can be made stretchable for centering effects. For example, to cause each
song body to be centered on the page with one song per page, you could write:

[songcoTumnsj{1}
[\spenaltyF-10000

\afterpreludeskip=2pt plus 1fil
\beforepostludeskip=2pt plus 1fil

The vertical distance between the baselines of consecutive lines of lyrics is
computed by the songs package based on several factors including the lyric font size,
the chord font size (if in mode), and whether mode is currently
active. You can adjust the results of this computation by redefining skip register
\baselineadj. For example, to reduce the natural distance between baselines by
1 point but allow an additional 1 point of stretching when attempting to balance
columns, you could define

29

\clineparams

\cbarwidth

\sbarheight

\extendprelude
\showauthors
\showrefs

\extendpostlude

\baselineadj=-1pt plus 1pt minus Opt

To change the vertical distance between chords and the lyrics below them,
redefine the \clineparams macro with a definition that adjusts the BTEX parame-
ters \baselineskip, \lineskiplimit, and \lineskip. For example, to cause the
baselines of chords and their lyrics to be 12 points apart with at least 1 point of
space between the bottom of the chord and the top of the lyric, you could write:

\renewcommand{\clineparams}{
\baselineskip=12pt
\lineskiplimit=1pt
\lineskip=1pt

}

The width of the vertical line that appears to the left of choruses is controlled
by the \cbarwidth length. To eliminate the line entirely (and the spacing around
it), you can set \cbarwidth to Opt:

\setlength{\cbarwidth}{Opt}

The height of the horizontal line that appears between each pair of songs is
controlled by the \sbarheight length. To eliminate the line entirely (and the
spacing around it), you can set \sbarheight to Opt:

\setlength{\sbarheight}{Opt}

Song Top and Bottom Material. You can adjust the header and footer
material that precedes and concludes each song by redefining \extendprelude
and \extendpostlude.

By default, \extendprelude displays the song’s authors and scripture refer-
ences using the macros \showauthors and \showrefs. The following definition
changes it to also print copyright info:

\renewcommand{\extendprelude}{

[\showrefs\showauthors|
{\bfseries\songcopyrightf\par}

}

By default, \extendpostlude prints the song’s copyright and licensing in-
formation as a single paragraph using [\songcopyright|and [\songlicensel The
following definition changes it to also print the words “Used with permission” at
the end of every song’s footer information:

\renewcommand{\extendpostlude}{
[\songcopyright\ [\songlicense\unskip
\ Used with permission.

}

30

\makeprelude
\makepostlude

\vvpenalty
\ccpenalty
\vcpenalty
\cvpenalty
\brkpenalty

\sepverses

In general, any macro documented in can be used in \extendprelude and
\extendpostlude to print song information, such as [\songauthors| \songrefs|

[\songcopyright| and \songlicensel For convenience, the and

[\showrefs| macros display author and scripture reference information as a pre-

formatted paragraph the way it appears in the default song header blocks.

See for how to define new keyvals and use them in
\extendprelude.

For complete control over the appearance of the header and footer material that
precedes and concludes each song, you can redefine the macros \makeprelude and
\makepostlude. When typesetting a song, the songs package code invokes both
of these macros once (after processing all the material between the
and lines), placing the results within vboxes. The resulting vboxes
are placed atop and below the song content. By default, \makeprelude displays
the song’s titles, authors, and scripture references to the right of a shaded box
containing the song’s number; and \makepostlude displays the song’s copyright
and licensing information in fine print.

As a simple example, the following causes each song to start with its number
and title(s), centered, in a large, boldface font, and then centers the rest of the
prelude material (e.g., references and authors) below that (using[\extendpreludel.

\renewcommand\makeprelude{’

\centering

{\Large\bfseries\thesongnum|. \songtitlef\par
[NnexttitId\foreachtitlel (\songtitle]) \par}}%

[\extendprelude]
}

Page- and Column-breaking. Page-breaking and column-breaking within
songs that are too large to fit in a single column/page is influenced by the values of
several penalties. Penalties of value \interlinepenalty are inserted between con-
secutive lines of each verse and chorus; penalties of value \vvpenalty, \ccpenalty,
\vcpenalty, and \cvpenalty are inserted into each song between consecutive
verses, between consecutive choruses, after a verse followed by a chorus, and after
a chorus followed by a verse, respectively; and penalties of value \brkpenalty are
inserted wherever is used on a line by itself. The higher the penalty, the
less likely TEX is to place a page- or column-break at that site. If any are set to
—10000 or lower, breaks are forced there. By default, \interlinepenalty is set
to 1000 and the rest are set to 200 so that breaks between verses and choruses are
preferred over breaks within choruses and verses, but are not forced.

Saying \sepverses sets all of the above penalties to —10000 except for
\ccpenalty which is set to 100. This is useful in[s1ides| mode because it forces
each verse and chorus to be typeset on a separate slide, except for consecutive
choruses, which remain together when possible. (This default reflects an expecta-
tion that consecutive choruses typically consist of a pre-chorus and chorus that
are always sung together.)

31

\versejustify
\chorusjustify
\justifyleft
\justifycenter

\notejustify

\placenote

\scripturefont

\printscrcite

\if...

These defaults can be changed by changing the relevant penalty register directly.
For example, to force a page- or column-break between consecutive choruses, type

\ccpenalty=-10000

Text Justification. To left-justify or center the lines of verses or choruses,
redefine \versejustify or \chorusjustify to \justifyleft or \justifycenter,
respectively. For example, to cause choruses to be centered, one could type:

\renewcommand{\chorusjustify[t{\justifycenter}

Justification of textual notes too long to fit on a single line is controlled by the
\notejustify macro. By default, it sets up an environment that fully justifies the
note (i.e., all but the last line of each paragraph extends all the way from the left
to the right margin). Authors interested in changing this behavior should consult
§15.2] of the implementation section for more information about this macro.

A textual note that is shorter than a single line is placed flush-left by default,
or is centered when in slides mode. This placement of textual notes is controlled
by \placenote. Authors interested in changing this behavior should consult
of the implementation section for more information about this macro.

11.3 Scripture Appearance

By default, scripture quotations are typeset in Zaph Chancery font with the
document-default point size (\normalsize). You can change these defaults by
redefining \scripturefont. For example, to cause scripture quotations to be
typeset in sans serif italics, define:

\renewcommand{\scripturefont}{\sffamily\it}

By default, the citation at the end of a scripture quotation is typeset in sans
serif font at the document-default point size (\normalsize). You can customize
the appearance of the citation by redefining \printscrcite, which accepts the
citation text as its argument. For example, to cause citations to be printed in
roman italics font, define:

\renewcommand{\printscrcite}[1]{\rmfamily\it#1}

11.4 Conditional Blocks

Conditional macros allow certain material to be included in some books but not
others. For example, a musician’s chord book might include extra verses with
alternate chordings.

A conditional block begins with a macro named \if (type), where (type) is one
of the types listed in the first column of Table [I} The conditional block concludes
with the macro \fi. Between the \1f(type) and the \fi may also appear an \else.
For example, in the construction

32

\songcolumns

Type Processed only if. ..

chorded the [chorded| option is active

lyric the [chorded| option is not active

slides the [slides|option is active

partiallist the \includeonlysongs| macro is being used to extract a
partial list of songs

songindexes the noindexes| option is not active

measures the nomeasuresl option is not active

rawtext the [rawtext| option is active

transcapos the transposecaposl option is active

nolyrics the [\nolyrics|macro is in effect

pagepreludes the \pagepreludesl macro is in effect

vnumbered the current verse is numbered (it was started with
[\beginverse|instead of \ beg1nverse|*

Table 1: Conditional macros

\ifchorded
(4)
\else
(B)
\fi
material (A) is only included if the option is active, and material (B) is
only included if the option is not active.

11.5 Page Layout

The number of columns per page can be set with \songcolumns. For example,
to create 3 columns per page, write

\songcolumns{3}

The number of columns should only be changed outside of environments.
Setting the number of columns to zero disables the page-building algorithm
entirely. This can be useful if you want to use an external package, such as multicol
or IMTEX’s built-in \twocolumn macro, to build pages. For example, the following
sets up an environment that is suitable for a lyric book that uses \twocolumn:

\songcolumns{0}
\flushbottom
\twocolumn [\LARGE\centering My Songs]

\begin{songs[H{}
\ond(EoTET}

When disabling the page-builder, please note the following potential issues:

33

\pagepreludes

\columnsep

\colbotglue

\lastcolglue

\songpos

e The feature does not work when the page-builder is disabled
because the page-builder is responsible for inserting repeated choruses as new

columns are formed.

e External page-building packages tend to allow column- and page-breaks
within songs because they have no mechanism for moving an entire song to

the next column or page to avoid such a break (see below).

e Indexes produced with are typeset to the width of the enclosing
environment. Thus, you should be sure to reset IXTEX back to one column
(via \onecolumn) before executing

Song preludes (i.e., the material atop each song, including the title) are typeset
by default at column width. Writing \pagepreludes typesets subsequent preludes
at page width atop fresh pages, with the rest of the song in multiple columns
beneath its title. (To prohibit separation of songs from their preludes, it also
sets to 0.)

The horizontal distance between consecutive columns is controlled by the
\columnsep dimension. For example, to separate columns by 1 centimeter of
space, write

\columnsep=1cm

When ITEX ends each column it inserts glue equal to \colbotglue. In lyric
books this macro is set to Opt so that each column ends flush with the bottom of
the page. In other books that have ragged bottoms, it is set to stretchable glue so
that columns end at whatever vertical position is convenient. The recommended
setting for typsetting columns with ragged bottoms is:

\renewcommand{\colbotglue}{Opt plus .5\textheight minus Opt}

The last column in a [songs| environment gets \lastcolglue appended to it
instead. By default it is infinitely stretchable so that the last column ends at its
natural height. By setting it to Opt, you can force the last column to be flush
with the bottom of the page:

\renewcommand{\lastcolglue}{Opt}

The songs package uses a song-positioning algorithm that moves songs to
the next column or page in order to avoid column- or page-breaks within songs.
The algorithm has four levels of aggressiveness, numbered from 0 to 3. You can
change the aggressiveness level by typing

\songpos{(level)}

The default level is 3, which avoids column-breaks, page-breaks, and page-turns
within songs whenever possible. (Page-turns are page-breaks after odd-numbered
pages in two-sided documents, or after all pages in one-sided documents.) Level 2
avoids page-breaks and page-turns but allows column-breaks within songs. Level
1 avoids only page-turns within songs. Level 0 turns off the song-positioning

34

\spenalty

\sepindexestrue
\sepindexesfalse

\idxheadwidth

\idxrefsfont

\idxtitlefont
\idxlyricfont

\idxheadfont

algorithm entirely. This causes songs to be positioned wherever TEX thinks is best
based on penalty settings (see [\vvpenalty|and [\spenalty).

The value of \spenalty controls the undesirability of column breaks at song
boundaries. Usually it should be set to a value between 0 and S0
that breaks between songs are preferable to breaks between verses within a song.
By default it is set to 100. When it is —10000 or less, breaks between songs are
required, so that each song always begins a fresh column.

11.6 Indexes
11.6.1 Index Appearance

Index Titles. To customize the appearance of index titles, redefine the

and /or \songchapter|macros from ggl For example, to use BTEX’s

built-in \section and \chapter macros instead, you could write:

\renewcommand{\songchapter|t{\chapter}
\renewcommand{[\songsection]t{\section}

Layout and page divisions. Indexes are by default typeset on separate pages,
and when an index is sufficiently small, it is centered on the page in one column.
To disable these defaults, write \sepindexesfalse. This causes indexes to avoid
using unnecessary vertical space or starting unnecessary new pages. To re-enable
the defaults, use \sepindexestrue.

The \idxheadwidth length defines the width of the shaded boxes that begin
each alphabetic block of a large title index. Setting it to Opt suppresses the boxes
entirely. For example, to set the width of those boxes to 1 centimeter, you could
define

\setlength{\idxheadwidth}{1cm}

Fonts and colors. To control the formatting of the list of references on the
right-hand side of index entries, redefine \idxrefsfont. For example, to typeset
each list in boldface, write

\renewcommand{\idxrefsfont}{\bfseries}

Title indexes contain entries for song titles and also entries for notable
lines of lyrics. The fonts for these entries are controlled by \idxtitlefont and
\idxlyricfont, respectively. For example, to show title entries in boldface sans-
serif and lyric entries in regular roman font, one could define:

\renewcommand{\idxtitlefont}{\sffamily\bfseries}
\renewcommand{\idxlyricfont}{\rmfamily\mdseries}

To change the font used to typeset the capital letters that start each alphabetic
section of a large title index, redefine \idxheadfont. For example, to typeset
those letters in italics instead of boldface, type

35

\idxbgcolor

\idxauthfont

\idxscripfont

\idxbook

\idxcont

\indexsongsas

\renewcommand{\idxheadfont}{\sffamily\it\LARGEZ}

To change the background color of the shaded boxes that contain the capital
letters that start each alphabetic sectino of a large title index, redefine \idxbgcolor.
For example:

\renewcommand{\idxbgcolor}{red}

The font used to typeset entries of an author index is controlled by
\idxauthfont. For example, to typeset such entries in italics instead of bold-
face, type

\renewcommand{\idxauthfont}{\small\it}

The font used to typeset entries of a scripture index is controlled by
\idxscripfont. For example, to typeset such entries in boldface instead of
italics, type

\renewcommand{\idxscripfont}{\sffamily\small\bfseries}

To control the formatting of the lines that start each new book of the bible in
a scripture index, redefine \idxbook, which accepts the book name as its single
argument. For example, to typeset each book name in a box, one could define

\renewcommand{\idxbook} [1]{\framebox{\small\bfseries#1}}

In a scripture index, when a column break separates a block of entries devoted
to a book of the bible, the new column is titled “(bookname) (continued)” by
default. You can change this default by redefining the \idxcont macro, which
receives the (bookname) as its single argument. For example, to typeset an index
in German, one might define

\renewcommand{\idxcont}[1]{\small\textbf{#1} (fortgefahren)}

11.6.2 Entry References

By default, the right-hand side of each index entry contains a list of one or more
song numbers. To instead list page numbers, use the \indexsongsas macro:

\indexsongsas{(id)}{\thepage}

where (id) is the same identifier used in the [\newindex| \newauthorindex| or
\newscripindex| macro that created the index. The second argument must always
be something that expands into raw text without any formatting, since this text
gets output to auxiliary files that are lexographically sorted by the index-generation

program. To go back to indexing songs by song number, use in place
of \thepage in the above.

36

\songtarget
\songlink

11.6.3 PDF Bookmarks and Links

Each environment adds a PDF bookmark (if generating a PDF)
and hyperlink target (if using the hyperref package) for the song by invoking
\songtarget with two arguments: (1) a suggested PDF bookmark level, and (2)
a link target name. Links in indexes to these targets are created by \songlink,
which also gets two arguments: (1) the link target name (same as the second
argument to \songtarget]), and (2) the text to be linked.

Redefine these macros to customize or suppress these bookmarks, targets, and
links. For example, to enable both bookmarks and links (the default behavior) use:

\renewcommand{\songtarget}[2]
{\pdfbookmark [#1]{\thesongnum|. \songtitle[F{#2}}
\renewcommand{\songlink} [2] {\hyperlink{#1}{#2}}

To enable links but not bookmarks, use:

\renewcommand{\songtarget}[2] {\hypertarget{#2}{\relax}}
\renewcommand{\songlink} [2] {\hyperlink{#1}{#2}}

To disable both bookmarks and links, use:

\renewcommand{\songtarget} [2]{}
\renewcommand{\songlink} [2] {#2}

11.6.4 Sort Order

The alphabetic ordering of entries in title and author indexes is dictated by the
computer system on which the songs software is installed. Different languages
and regions have different sorting conventions, so the songidx Lua script delegates
decisions about order to your operating system. If the default ordering proves
inadequate, you can modify it by changing your operating system’s locale (see
your system’s local help files). Alternatively, you can explicitly tell the songidx
program which locale to use in one of three ways:

e Windows: Edit the generate.bat file in the Sample folder (or your working
folder) with any plain text editor (e.g., Vim or Notepad). Near the top, find
the line that says SET locale=. After the =, type any valid locale name.
For a list of valid locale names on Windows, please see the “Language name
abbreviation” column of Microsoft’s online National Language Support (NLS)
APT Reference:

http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx

e Uniz: Create an environment variable named SONGIDX_LOCALE and set it
equal to the desired locale name. The command locale -a lists all valid
locale names on most Unix systems.

e Command-line: If you are executing the songidx script manually, use the
-1 option to specify the locale:

texlua songidx -1 sv_SE myindex.sxd myindex.sbx

37

http://msdn.microsoft.com/en-us/goglobal/bb896001.aspx

\titleprefixword

\authsepword

\authbyword

\authignoreword

11.6.5 Special Words In Song Info

The following macros control how certain keywords are treated when parsing and
sorting index entries. They only affect indexes that have already been declared, so
put them strictly after all your index creation commands (see .

In English, when a title begins with “The” or “A”, it is traditional to move
these words to the end of the title and sort the entry by the following word. So for
example, “The Song Title” is typically indexed as “Song Title, The”. To change
this default behavior, you can use \titleprefixword in the document preamble
to identify each word to be moved to the end whenever it appears as the first
word of a title index entry. For example, to cause the word “I” to be moved to
the end of title index entries, one could say,

\titleprefixword{I}

The first use of \titleprefixword overrides the defaults, so if you also want
to continue to move “The” and “A” to the end of entries, you must also say
\titleprefixword{The} and \titleprefixword{A} explicitly. This macro may
only be used in the document preamble but may be used multiple times to declare
multiple prefix words.

When parsing author index entries, the word “and” is recognized by the
songidx script as a conjunctive that separates author names. To override this
default and specify a different conjunctive, use the \authsepword macro one or
more times in the document preamble. For example, to instead treat “und” as
a conjunctive, you could say,

\authsepword{und}

The first use of \authsepword and each of the following macros overrides the
default, so if you also want to continue to treat “and” as a conjunctive, you must
also say \authsepword{and} explicitly.

When parsing author index entries, the word “by” is recognized as a keyword
signaling that the index entry should only include material in the current list item
that follows the word “by”. So for example, “Music by J.S. Bach” is indexed as
“Bach, J.S.” rather than “Bach, Music by J.S.” To recognize a different word instead
of “by”, you can use \authbyword in the document preamble. For example, to
recognize “durch” instead, you could say

\authbyword{durch}

When parsing author index entries, if a list item contains the word “unknown”,
that item is ignored and is not indexed. This prevents items like “Composer
unknown” from being indexed as names. To cause the indexer to recognize
and ignore a different word, you can use the \authignoreword macro in the
document preamble. For example, to ignore author index entries containing the
word “unbekannt”, you could say,

\authignoreword{unbekannt}

38

\songmark
\versemark
\chorusmark

\newsongkey

11.7 Page Headers and Footers

In BTEX, page headers and footers are defined using a system of invisible marks
that get inserted into the document at the beginning of each logical unit of the
document (e.g., each section, song, verse, and chorus). The headers and footers
are then defined so as to refer to the first and/or last invisible mark that ends
up on each page once the document is divided into pages. This section describes
the marks made available by the songs package. For more detailed information
about the marks already provided by K'TEX and how to use them, consult any
ETEX user manual.

To add song information to page headings and footers, redefine \songmark,
\versemark, or \chorusmark to add the necessary TEX marks to the current page
whenever a new song, verse, or chorus begins. These macros expect no arguments; to
access the current song’s information including titles, use the macros documented
in §12] To access the current song’s number or the current verse’s number,
use [\thesongnun] or \theversenun] (see §I1.1). For example, to include the
song number in the page headings produced by ETEX’s \pagestyle{myheadings}
feature, you could redefine \songmark as follows:

\renewcommand{\songmark}{\markboth{\thesongnumlt{\thesongnum|}}

11.8 Defining New Beginsong Keyvals

The macro supports several optional keyval parameters for declaring
song information, including[by=] and[cr Users can define their own additional
keyvals as well. To do so, use the \newsongkey macro, which has the syntax

\newsongkey{(keyname)H (initcode)} [{default)]1{(setcode)}

Here, (keyname) is the name of the new key for the keyval, (initcode) is N TEX
code that is executed at the start of each line before the
arguments are processed, (default) (if specified) is the default value used for the
keyval when (keyname) appears inwithout a value, and (setcode) is
macro code that is executed whenever (key) is parsed as part of the
keyval arguments. In (setcode), #1 expands to the value given by the user for the
keyval (or to (default) if no value was given).

For example, to define a new song key called arr which stores its value in a
macro called \arranger, one could write:

\newcommand{\arranger}{}
\newsongkey{arr}{\def\arranger{}}
{\def\arranger{Arranged by #1\par}}

Then one could redefine \extendprelude| to print the arranger below the other
song header information:

\renewcommand{\extendprelude}{

[\showrefg\showauthors|

{\bfseries\arranger?

}

39

\chordlocals

A line could then specify the song’s arranger as follows:
[(beginsongl{The Title}[arr={R. Ranger}]

This produces

1 The Title

Arranged by R. Ranger

For more detailed information about keyvals and how they work, consult the
documentation for David Carlisle’s keyval package, which comes standard with
most ITEX 2¢ installations.

11.9 Font Kerning Corrections

Chord Overstriking. In order to conserve space and keep songs readable, the
songs package pushes chords down very close to the lyrics with which they are
paired. Unfortunately, this can sometimes cause low-hanging characters in chord
names to overstrike the lyrics they sit above. For example,

Gsus4/D)
\[(Gsus4/D)]0verstrike produces Overstrike

Note that the parentheses and slash symbols in the chord name have invaded the
lyric that sits beneath them.

The best solution to this problem is to use a font for chord names that minimizes
low-hanging symbols; but if you lack such a font, then the following trick works
pretty well. Somewhere in the preamble of your document, you can write the
following XTEX code:

\renewcommand{\chordlocals}{\catcode‘ (\active
\catcode ‘)\active
\catcode‘/\active}
\newcommand{\smraise}[1]{\raise2pt\hbox{\small#1}}
\newcommand{\myslash}{\smraise/}
\newcommand{\myopenparen}{\smraise (}
\newcommand{\mycloseparen}{\smraise)?}
{\chordlocals
\global\let (\myopenparen
\global\let)\mycloseparen
\globalllet/\myslash}

This sets the /, (, and) symbols as active characters whenever they appear within
chord names. (See for documentation of the \chordlocals hook.) Each
active character is defined so that it produces a smaller, raised version of the
original symbol. The result is as follows:

40

\shiftdblquotes

\songauthors

\songrefs

\songcopyright

\songlicense

\songtitle

\resettitles

(Gsus4/D)
\[(Gsus4/D)]0verstrike (fixed) produces Overstrike (fixed)

As you can see, the low-hanging symbols have been elevated so that they sit above
the baseline, correcting the overstrike problem.

Scripture Font Quotation Marks. The songs package compensates for a
kerning problem in the Zaph Chancery font (used to typeset scripture quotations)
by redefining the ‘¢ and >’ token sequences to be active characters that yield
double-quotes shifted 1.1 points and 2 points left, respectively, of their normal
positions. If you use a different font size for scripture quotations, then you can
use the \shiftdblquotes macro when redefining \scripturefont|to change this
kerning correction. For example,

\renewcommand{[\scripturefont[{
\usefont{0T1}{pzc}{mb}{it}
\shiftdblquotes{-1pt}{-2pt}{-3pt}{-4pt}

}

removes 1 point of space to the left and 2 points of space to the right of left-
double-quote characters, and 3 points to the left and 4 points to the right of
right-double-quotes, within scripture quotations.

12 Informational Macros

The macros described in this section can be used to retrieve information
about the current song. This can be used when redefining [\extendprelude|

[\extendpostlude] [\makeprelude] [\makepostlude} [\songmark} \versemark} or

[Nchorusmark] or any other macros that might typeset this information.

To get the current song’s list of authors (if any) use \songauthors. This yields

the value of the [by=] key used in the line.

To get the current song’s list of scripture references (if any) use \songrefs.
This yields the value of the key used in the line, but modified
with hyphens changed to en-dashes and spaces falling within a list of verse numbers
changed to thin spaces for better typesetting. In addition, various penalties have
been added to inhibit line breaks in strange places and encourage line breaks
in others.

To get the current song’s copyright info (if any), use \songcopyright. This
yields the value of the key used in the line.

To get the current song’s licensing information (if any), use \songlicense.
This yields the value of the key used in the line, or whatever
text was declared with

The \songtitle macro yields the current song’s title. By default this is the
first title provided in the \beginsong]line. The \nexttitleland \foreachtitle]
macros (see below) cause it to be set to the current song’s other titles, if any.

To get the current song’s primary title (i.e., the first title specified in the

41

\nexttitle

\foreachtitle

\songlist

song’s line), execute \resettitles. This sets the \songtitle macro
to be the song’s primary title.

To get the song’s next title, execute \nexttitle, which sets \songtitle to
be the next title in the song’s list of titles (or sets \songtitle to \relax if there
are no more titles).

The \foreachtitle macro accepts ITEX code as its single argument and
executes it once for each (remaining) song title. Within the provided code, use
\songtitle to get the current title. For example, the following code generates a
comma-separated list of all of the current song’s titles:

\songtitle
\nexttitle
\foreachtitleq{, [\songtitle[

When \includeonlysongs| is used to extract a partial list of songs, the
\songlist macro expands to the comma-separated list of songs that is being
extracted. Redefining \songlist within the document preamble alters the list of
songs to be extracted. Redefining it after the preamble may have unpredictable
results.

13 Other Resources

There are a number of other IXTEX packages available for typesetting songs,
tablature diagrams, or song books. Probably the best of these is the Songbook
package by Christopher Rath (http://rath.ca/Misc/Songbook/)). Most of the
differences between other packages and this one are intentional; the following is a
summary of where I’ve adopted various differing design decisions and why.

Ease of Song Entry. Much of the songs package programming is devoted to
easing the burden of typing chords. With most I¥TEX song book packages the user
types chords using a standard BTEX macro syntax like \chord{(chord)}{(lyric)}.
The songs package uses a less conventional \ [{chord)] (lyric) syntax for several
reasons detailed below.

First, macros in the standard XTEX syntax require more key-presses than
macros in the songs package’s syntax. This can become become very taxing when
typing up a large book. Chords often appear as frequently as one per syllable,
especially in hymns, so keeping the syntax as brief as possible is desirable.

Second, the standard EXTEX macro syntax requires the user to estimate how
much of the (lyric) will lie below the chord (because the (lyric) part must be
enclosed in braces) whereas the songs package’s syntax does not. Estimating this
accurately can be quite difficult, since in many cases the (lyric) part must include
punctuation or multiple words to get proper results. The songs package automates
this for the user, significantly easing the task of chord-entry.

42

http://rath.ca/Misc/Songbook/

Third, unlike the standard IXTEX chord syntax, the songs package’s syntax
handles all hyphenation of chorded lyrics fully automatically. Extra hyphenation
must be introduced in chord books wherever a chord is wider than the syllable
it sits above. With the standard EXTEX chord syntax such hyphenation must be
introduced manually by the user (usually via a special hyphenation macro), but
the songs package does this automatically.

Fourth and finally, some other packages allow the user to use “b” in a (chord)
to produce a flat symbol, whereas the songs package requires an “&” instead. Using
“b” is more intuitive but prevents the use of “b” for any other purpose within a
(chord), such as to produce a literal “b” or to type another macro name like \hbox
that contains a “b”. Consequently, the songs package uses the less obvious “&”
symbol to produce flat symbols.

Song Structure. The songs package provides a relatively small number of
macros for typesetting high-level song structure, including verses, choruses, textual
comments, and conditional macros that indicate that certain sections should go
in chord books but not lyric books. These can be combined to typeset more
sophisticated structures such as intros, bridges, brackets, endings, and the like.
This is done in lieu of providing a specific macro for each of these structures since
it results in greater flexibility and fewer macros for users to learn.

Multiple columns. The songs package was designed from the ground up to
produce song books with many songs per page, arranged in multiple columns.
As a result, it includes elaborate support for many features not found in most
other packages, such as automatic column balancing, completely customizable
song header and song footer blocks, and facilities for adding beautiful scripture
quotations to fill in gaps between songs.

Indexes. Another major feature of the songs package is its support for a variety
of different index types, most notably indexes arranged by scripture reference.
Scripture indexes can be invaluable for planning services around particular sermons
or topics. The songs package allows book authors to specify the names and
preferred ordering of books of the bible, and automatically handles complex issues
like overlapping verse ranges to produce an easy-to-read, compact, and well-ordered
index. Other supported indexes include those sorted by author, by title, and by
notable lines of lyrics.

Automatic Transposition. The songs package has a facility for automatically
transposing songs, and even generating chord books that print the chords in
multiple keys (e.g., so that a pianist and guitarist using a capo can play together
from the same book).

The songs package was developed entirely independently of all other IXTEX

song book packages. I originally developed the set of I TEX macros that eventually
became the songs package in order to typeset a song book for the Graduate

43

Christian Fellowship (GCF) at Cornell University, and the Cornell International
Christian Fellowship (CICF). Once I had fine-tuned my package to be sufficiently
versatile, I decided to release it for public use. At that time I noticed the Songbook
package and others, and wrote this summary of the most prominent differences.

For information on more song-typesetting resources for KTEX, I recommend
consulting the documentation provided with the Songbook package. It includes an
excellent list of other resources that might be of interest to creators of song books.

14 GNU General Public License

TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and
a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any
warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at
your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this
License.

44

(c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License.
(Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above
provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

45

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties
are not compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain
in full compliance.

. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.

. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You may
not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this
License.

. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
quence of the rest of this License.

46

10.

11.

12.

. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution
limitation excluding those countries, so that distribution is permitted only in or
among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the

General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any
later version published by the Free Software Foundation. If the Program does not
specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NoO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS)7 EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

47

\ifSB@etex

15 Implementation

The following provides the verbatim implementation of the songs IXTEX package,
along with commentary on how it works. In general, macro names that contain
a @ symbol are not intended to be directly accessible by the outside world; they
are for purely internal use. All other macros are intended to be used or redefined
by document authors.

Most of the macros likely to be of real interest to song book authors can be
found in To find the implementation of any particular macro, the index at
the end of this document should prove helpful.

The unwary TEXer may wonder at the rather large size of the implementation.
The volume and complexity of the code stems mainly from the following challenging
features:

e Putting chords above lyrics fully automatically requires building an entire

lyric-parser in BTEX (see §15.10)).

e Avoiding page-turns within songs without prohibiting column-breaks requires
building a completely new page-breaking algorithm (see .

e The package must be able to generate a daunting number of document
variants from a common source: lyric-only books, chorded books, digital
slides, transparency slides, selected song subsets, transposed songs, and
combinations of the above. This is like putting six or more packages into one.

e Song book indexes are far more complex than those for a prose book. See
§15.15] for some of the difficulties involved.

15.1 Initialization

The code in this section detects any TEX versioning or configuration settings that
are relevant to the rest of the song book code.

Numerous enhancements are possible when using an e-TEX compatible version of
KTEX. We start by checking to see whether e-TEX primitives are available.

1 \newif\ifSBQ@etex

2 \ifx\eTeXversion\undefined\else

3 \ifx\eTeXversion\relax\else
\SB@etextrue
\ifx\e@alloc\@undefined

\IfFileExists{etex.sty}{\RequirePackage{etex}}{}
\fi
\fi
\fi

© 0 N O Ut

48

\ifSBepdf

\ifSB@preamble

\ifSBG@test
\ifSB@testii
\SB@temp
\SB@tempii
\SB@tempiii
\SB@tempiv
\SB@tempv

\SB@newcount
\SB@newdimen
\SB@newbox
\SB@newtoks
\SB@newwrite

\SB@dimen
\SB@dimenii
\SB@dimeniii
\SB@dimeniv
\SB@box
\SB@boxii
\SB@boxiii
\SB@toks
\SB@cnt
\SB@cntii
\SB@skip

Detect whether we're generating a pdf file, since this affects the treatment of
hyperlinks and bookmark indexes.

10 \newif\ifSB@pdf\SB@pdffalse

11 \IfFileExists{ifpdf.sty}{\RequirePackage{ifpdf}\ifpdf\SB@pdftrue\fi}{

12 \ifx\pdfoutput\undefined\else

13 \ifx\pdfoutput\relax\else

14 \ifnum\pdfoutput<\@ne\else
15 \SB@pdftrue

16 \fi

17 \fi

18 \fi

19 }

Some macros have different effects depending on when they’re used in the preamble
or in the document body, so we need a conditional that remembers whether we’re
still in the preamble. It gets initialized to true and later changed to false once the
body begins.

20 \newif\ifSB@preamble

21 \SB@preambletrue

Reserve some control sequence names for scratch use.

22 \newif\ifSB@test

23 \newif\ifSBOtestii

24 \newcommand\SB@temp{}

25 \newcommand\SB@tempii{}
26 \newcommand\SB@tempiii{}
27 \newcommand\SB@tempiv{}
28 \newcommand\SB@tempv{}

Create macros for safely allocating count, dimen, box, token, and write registers
with detection for name-clashes. For some reason, the default allocation macros
provided by the IXTEX kernel do not detect name-clashes(!), which means that
packages that use them might accidentally overwrite our registers, causing all sorts
of problems. But at least we can do our best to avoid overwriting their registers.

29 \newcommand\SB@newcount [1]{\@ifdefinable#1{\newcount#1}}
30 \newcommand\SB@newdimen[1]{\@ifdefinable#1{\newdimen#1}}
31 \newcommand\SB@newbox [1]{\@ifdefinable#1{\newbox#1}}

32 \newcommand\SB@newtoks [1] {\@ifdefinable#1{\newtoks#1}}
33 \newcommand\SB@newwrite[1]{\@ifdefinable#1{\newwrite#1}}

Reserve some temp registers for various purposes.

34 \SB@newdimen\SB@dimen

35 \SB@newdimen\SB@dimenii
36 \SB@newdimen\SB@dimeniii
37 \SB@newdimen\SB@dimeniv
38 \SB@newbox\SB@box

39 \SB@newbox\SB@boxii

40 \SB@newbox\SB@boxiii

49

\SB@envbox

\SB@app

\lyricfont

\stitlefont

\versefont

\chorusfont

\notefont
\meterfont

\echofont

41 \SB@newtoks\SB@toks
42 \SB@newcount\SB@cnt
43 \SB@newcount\SB@cntii
44 \newlength\SB@skip

Also reserve a slightly less volatile box register for per-environment use. In scripture
environments it holds the scripture citation. In indexes it holds the index title text.

45 \SB@newbox\SB@envbox

Load David Carlisle’s keyval package for processing (key)=(value) style macro
arguments.

46 \RequirePackage{keyval}

Utility macro: Append some text to the definition of another macro.
47 \newcommand\SB@app [3]{%

48 \expandafter#l\expandafter#2\expandafter{#2#3}/,
49 }

15.2 Default Parameters

This section defines macros and lengths that will typically be executed or redefined
by the user in the document preamble to initialize the document. (Not all of these
are restricted to preamble usage, however. Many can be used throughout the
document to switch styles for different sections or different songs.)

Define the font style to use for formatting song lyrics.

50 \newcommand\lyricfont{\normalfont\normalsize}

Define the font style to use for formatting song titles.
51 \newcommand\stitlefont{/,

52 \sffamily\ifslides\Huge\else\slshape\Large\fi},
53 }

By default, verses, choruses, and textual notes just allow the \lyricfont style to
continue. Meter numbers are in tiny, sans-serif, upright font. Echo parts toggle
slanted and upright fonts.

54 \newcommand\versefont{}

55 \newcommand\chorusfont{}

56 \newcommand\notefont{}

57 \newcommand\meterfont{\tiny\sffamily\upshape}

Echo parts toggle between oblique and upright shapes like \emph, but we use
\slshape instead of \itshape because it tends to look nicer with the larger fonts
used in slides mode.

58 \newcommand\echofont{%

59 \ifdim\fontdimen\@ne\font>\z@\upshape\else\slshape\fi},

60

a0

\scripturefont

\printscrcite

\snumbgcolor
\notebgcolor
\idxbgcolor

\versejustify

\chorusjustify

\notejustify

\placenote

\thesongnum
\songnumstyle

Define the font style to use for formatting scripture quotations (defaults to Zapf
Chancery).

61 \newcommand\scripturefont{J,

62 \usefont{0T1}{pzct{mb}{it}},

63 \shiftdblquotes{-1.1\p@}\z@{-2\p@}\z@/,

64 }

Define the printing style for the citation at the end of a scripture quotation.

65 \newcommand\printscrcite[1]{\sffamily\small#1}

Define the background color used for shaded boxes containing song numbers, textual
notes, and index section headers, respectively. To turn off all shading for a box
type, use \def (macroname){}.

66 \newcommand\snumbgcolor{SongbookShade}

67 \newcommand\notebgcolor{SongbookShade}

68 \newcommand\idxbgcolor{SongbookShade}

Verses and choruses are both left-justified with hanging indentation equal to
\parindent.

69 \newcommand\versejustify{\justifyleft}
70 \newcommand\chorusjustify{\justifyleft}

Textual notes are fully justified when they are too long to fit in a single line.
71 \newcommand\notejustify{%

72 \advance\baselineskip\p@\relax

73 \leftskip\z@skip\rightskip\z@skip}

74 \parfillskip\@flushglue\parindent\z@j,

75 }

Textual notes are placed flush-left. The single argument to this macro is horizontal
material that comprises the note. Usually it will consist of various hboxes and
specials that were produced by \colorbox.

76 \newcommand\placenote [1]{/

77 \leftskip\z@skip\rightskip\@flushglue\SB@cbarshifty,

78 \noindent#1\par/

79 }

These counters define the current song number and verse number. They can
be redefined by the user at any time.

80 \newcounter{songnum}
81 \newcounter{versenum}

By default, the song numbering style will simply be an arabic number. Redefine
\thesongnunm to change it. (The \songnumstyle macro is obsolete and exists only
for backward compatibility.)

82 \renewcommand\thesongnum{\songnumstyle{songnum}}

83 \newcommand\songnumstyle{}
84 \let\songnumstyle\arabic

ol

\theversenum
\versenumstyle

\printsongnum

\printversenum

\placeversenum

\everyverse
\everychorus

\printchord

\chordlocals

\versesep

\afterpreludeskip
\beforepostludeskip

By default, the verse numbering style will simply be an arabic number. Redefine
\theversenum to change it. (The \versenumstyle macro is obsolete and exists
only for backward compatibility.)

85 \renewcommand\theversenum{\versenumstyle{versenum}}

86 \newcommand\versenumstyle{}

87 \let\versenumstyle\arabic

Define the printing style for the large, boxed song numbers starting each song.
88 \newcommand\printsongnum[1]{\sffamily\bfseries\LARGE#1}

Define the printing style for the verse numbers to the left of each verse.
89 \newcommand\printversenum[1]{\lyricfont#1.\ }

Verse numbers are placed flush-left. This is achieved by inserting horizontal glue
that reverses both the \leftskip and the \parindent. The single argument to
this macro is an hbox containing the verse number.

90 \newcommand\placeversenum[1]{%

91 \hskip-\leftskip\hskip-\parindent\relax,

92 \box#1%

93 }

The following hooks allow users to insert material at the head of each verse or
chorus.

94 \newcommand\everyverse{}
95 \newcommand\everychorus{}

Define the printing style for chords.
96 \newcommand\printchord[1]{\sffamily\slshape\large#1}

This hook is expanded at the start of the scoping group that surrounds every chord
name. Thus, it can be used to set any catcodes or definitions that should be local
to chord names.

97 \newcommand\chordlocals{}

Specify the vertical distance between song verses. This gets set to a sentinel value
by default; if the user doesn’t redefine it by the end of the document preamble, it
gets redefined to something sensible based on other settings.

98 \newlength\versesep
99 \versesep123456789sp\relax

Users can specify the amount of vertical space that separates song prelude and
postlude material from the body of the song by adjusting the following two macros.
100 \newlength\afterpreludeskip

101 \afterpreludeskip=2\p@\@plus4\p@

102 \newlength\beforepostludeskip

103 \beforepostludeskip=2\p@\@plus4\p@

92

\baselineadj

\clineparams

\parindent

\idxheadwidth

\songnumwidth

\versenumwidth

\cbarwidth

\sbarheight

Define an adjustment factor for the vertical distance between consecutive lyric
baselines. Setting this to zero accepts the default baseline distance computed by
the songs package.

104 \newlength\baselineadj

105 \baselineadj\z@skip

The spacing between chords and the lyrics below them can be adjusted by changing
the values of \baselineskip, \lineskiplimit, and \lineskip within the follow-
ing macro. By default, \baselineskip is set to 2 points smaller than the height
of the current (lyric) font, and \lineskiplimit and \lineskip are set so that
chords intrude at most 2 points into the lyric below them. This helps to keep
chords tight with lyrics.

106 \newcommand\clineparams{%

107 \baselineskip\f@size\p@/

108 \advance\baselineskip-2\p@J

109 \lineskiplimit-2\p@%

110 \lineskip-2\p@Y%

111 }

The \parindent length controls how far broken lyric lines are indented from the
left margin.

112 \parindent.25in

Specify the width of the head-boxes in a large index.

113 \newlength\idxheadwidth
114 \setlength\idxheadwidth{1l.5cm}

Set the width of the song number boxes that begin each song. We guess a suitable
width by typesetting the text “999.

115 \newlength\songnumwidth
116 \settowidth\songnumwidth{\printsongnum{999.}}

Set the width that is reserved for normal-sized verse numbers. (Verse numbers
wider than this will indent the first line of lyrics.)

117 \newlength\versenumwidth
118 \settowidth\versenumwidth{\printversenum{9\kerniem}}

This dictates the width of the vertical line placed to the left of choruses. Setting it
to Opt eliminates the line entirely.

119 \newlength\cbarwidth
120 \setlength\cbarwidth\p@

This dictates the height of the horizontal line placed between each pair of songs.
Setting it to Opt eliminates the line entirely.

121 \newlength\sbarheight
122 \setlength\sbarheight\p@

93

\vvpenalty
\ccpenalty
\vcpenalty
\cvpenalty
\brkpenalty

\spenalty

\songmark
\versemark
\chorusmark

\extendprelude
\extendpostlude

\idxheadfont

Column- and page-breaks should typically not occur within a verse or chorus
unless they are unavoidable. Thus, we set the \interlinepenalty to a high
number (1000).

123 \interlinepenalty\@m

The following count registers define the line-breaking penalties inserted between
verses, between choruses, after a verse followed by a chorus, after a chorus followed
by a verse, and at \brk macros, respectively.

The default value of 200 was chosen based on the following logic: Chord
books should not yield underfull vbox warnings no matter how short their columns
are. However, we still want to put as much material in each column as possible
while avoiding intra-song column-breaks when they can be avoided. Chorded
mode therefore sets \colbotglue with glue whose stretchability is half of the
\textheight. Such glue will stretch at most twice its stretchability, yielding a
badness of 800 in the worst case. The default \vbadness setting starts issuing
warnings at badness 1000, so we set the penalties below to 1000 — 800 = 200.

124 \SB@newcount\vvpenalty\vvpenalty200
125 \SB@newcount\ccpenalty\ccpenalty200
126 \SB@newcount\vcpenalty\vcpenalty200
127 \SB@newcount\cvpenalty\cvpenalty200
128 \SB@newcount\brkpenalty\brkpenalty200

The following penalty gets inserted between songs. Setting it to a proper value is
a somewhat delicate balancing act. It should typically be something between 0
and the default penalties above, so for now it defaults to 100. To start each song
on a fresh column/page, set it to —10000 or below.

129 \SB@newcount\spenalty\spenalty100

The user can redefine the following macros to add TEX marks for each song, each
verse, or each chorus. Such marks are used by IXTEX to define page headers and
footers.

130 \newcommand\songmark{}

131 \newcommand\versemark{}
132 \newcommand\chorusmark{}

To just add some fields to the existing \makeprelude or \makepostlude with-
out having to redefine them entirely, users can redefine \extendprelude or
\extendpostlude. By default, the prelude has the scripture references followed by
the authors, and the postlude has the copyright info followed by the licensing info.

133 \newcommand\extendprelude{\showrefs\showauthors}
134 \newcommand\extendpostlude{\songcopyright\ \songlicense\unskip}

Users can redefine \idxheadfont to affect the font in which each capital letter
that heads a section of a title index is rendered.

135 \newcommand\idxheadfont{\sffamily\bfseries\LARGE}

o4

\idxtitlefont

\idxlyricfont

\idxscripfont

\idxauthfont

\idxrefsfont

\idxbook

\idxcont

\colbotglue

\lastcolglue

\minfrets

\SB@colwidth

Users can redefine \idxtitlefont to affect the font in which song title index
entries are rendered.

136 \newcommand\idxtitlefont{\sffamily\slshape}

Users can redefine \idxlyricfont to affect the font in which notable lines of lyrics
are rendered in a title index.

137 \newcommand\idxlyricfont{\rmfamily}

Users can redefine \idxscripfont to affect the font in which scripture references
are rendered in a scripture index.

138 \newcommand\idxscripfont{\sffamily\small\slshape}

Users can redefine \idxauthfont to affect the font in which contributor names are
rendered in an author index.

139 \newcommand\idxauthfont{\small\bfseries}

Users can redefine \idxrefsfont to affect the font in which the list of song
references on the right-hand-side of an index entry is typeset.

140 \newcommand\idxrefsfont{\normalfont\normalsize}

Users can redefine \idxbook to dictate the book name header in a scripture index
that begins each book of the bible.

141 \newcommand\idxbook [1]{\small\bfseries#1}

Users can redefine \idxcont to dictate the column header in a scripture index
after a column break falls within a book of the bible.

142 \newcommand\idxcont [1]{\small\textbf{#1} (continued)}

Glue of size \colbotglue is inserted at the bottom of each column. We use a
macro instead of a glue register so that this can be redefined in terms of variable
quantities such as \textheight.

143 \newcommand\colbotglue{}
144 \let\colbotglue\z@skip

Glue of size \lastcolglue is inserted at the bottom of the last column.

145 \newcommand\lastcolglue{}
146 \let\lastcolglue\@flushglue

Define the minimum number of fret rows that should appear in tablature diagrams.

147 \SB@newcount\minfrets\minfrets4

Define a length to store the computed width of each column in a multi-column
song page. The user shouldn’t set this one directly, but some users might want to
refer to it in calculations.

148 \SB@newdimen\SB@colwidth

%)

slides
\slides

\justifyleft

\justifycenter

15.3 Package Options

This section defines code associated with the various option settings that can be
specified on the \usepackage line. Many of these options can also be turned on or
off subsequent to the \usepackage line, so macros for doing that are also located
here. The options are not actually processed until because some of the
macros defined here refer to macros that have not yet been defined.

(Default: off) Turning this option on generates a book of overhead slides—one for
each song. It really just amounts to changing various parameter settings. Elsewhere
in the code we also consult \ifslides to determine a few default parameter settings
and to use a different song preamble structure. All the parameter changes below
are local to the current scope; so to undo slides mode, just put \slides within a
group and end the group wherever you want the slides settings to end.
149 \DeclareOption{slides}{\slides}
150 \newcommand\slides{’
151 \slidestrue}
152 \def\lyricfont{\normalfont\huge}y,
153 \def\chorusfont{\slshape}’
154 \def\versejustify{\justifycenter}y,
155 \let\chorusjustify\versejustify
156 \def\placenote##1{\justifycenter\noindent##1\parl}/,
157 \scriptureoff,
158 \onesongcolumny,
159 \ifSB@preamble\ifSB@chordedspec\else\SB@chordsoff\fi\fi}
160 \spenalty-\@MY
161 \let\colbotglue\@flushgluey
162 \setlength\cbarwidth\z@}
163 \setlength\sbarheight\z@%
164 }

The \justifyleft macro sets up an environment in which lyrics are left-justified
with hanging indentation equal to \parindent. It reserves spaces for verse numbers
if used in a verse, and reserves space for the vertical bar left of choruses if used in
a chorus.

165 \newcommand\ justifyleft{%

166 \leftskip\parindent,

167 \ifSB@inverse\advance\leftskip\versenumwidth\fi},

168 \SB@cbarshift,

169 \parindent-\parindent},

170 }

The \justifycenter macro sets up an environment in which lyrics are centered
on each line. Verse numbers continue to be placed flush-left, but \placeversenum
is temporarily redefined to keep the rest of the line containing a verse number
centered.

171 \newcommand\ justifycenter{},
172 \centering\SB@cbarshift\rightskip\leftskip/

96

unouter
\SB@outer

rawtext

noshading

noindexes
\indexeson
\indexesoff

nopdfindex

\ifSB@measurespec
\ifSB@chordedspec

173 \def\placeversenum##1{/,

174 \hskip-\leftskip\hskip-\parindent\relax,
175 \hangindent-\wd##1\hangafter\m@ney,

176 \box##1\hfil}

177 Y%

178 }

(Default: off) Several macros provided by the songs package are, by default,
declared \outer to aid in debugging. However, unusual documents may need to
use these macros within larger constructs. To do so, use the unouter option to
prevent any of the macros supplied by this package from being declared \outer.

179 \newcommand\SB@outer{\outer}
180 \DeclareOption{unouter}{\let\SBQouter\relax}

(Default: off) Instead of generating a document, this dumps a text version
of the song book to a file. This option can only be set in the \usepackage line
because it dictates many top-level macro definitions. Turning rawtext on turns
off the indexes by default, but this can be overridden by explicitly setting index
options. (Note: Using rawtext with indexes turned on doesn’t actually work yet,
but might be added in a future revision.)

181 \DeclareOption{rawtext}{\rawtexttrue\indexesoff}

(Default: off) Inhibit all shaded boxes (e.g., if the color package is unavailable).
This option can only be set in the \usepackage line because the color package
must be loaded in the preamble if at all. (Note: In a future release this might be
extended to be modifiable throughout the preamble.)

182 \DeclareOption{noshading}{\SB@colorboxesfalse}

(Default: off) Suppress generation of index files and displaying of in-document
indexes. The \indexeson and \indexesoff macros can be used elsewhere to
toggle display of indexes. Index-regeneration will occur if indexes are turned on by
the end of the document.

183 \DeclareOption{noindexes}{\indexesoff}

184 \newcommand\indexeson{\songindexestrue}

185 \newcommand\indexesoff{\songindexesfalse}

(Default: off) Suppress creation of PDF bookmark entries and hyperlinks.

186 \DeclareOption{nopdfindex}{%
187 \let\songtarget\@gobbletwoy
188 \let\songlink\@secondoftwo}
189

The showmeasures and chorded options interact in the sense that by default,
switching one of them on or off switches the other on or off as well. However, if the
user explicitly says that one should be on or off, then switching the other shouldn’t
affect it. To produce this behavior, we need two extra conditionals to remember
whether each of these options has been explicitly specified by the user or whether
it is still in a default state.

o7

chorded

lyric
\chordson
\chordsoff
\SB@chordson
\SB@chordsoff

showmeasures
nomeasures
\measureson
\measuresoff
\SB@measureson
\SB@measuresoff

190 \newif\ifSB@measurespec
191 \newif\ifSB@chordedspec

(Default: chorded) Determines whether chords should be shown. This option
can be set in the \usepackage line or toggled elsewhere with the \chordson and
\chordsoff macros. Chords cannot be turned on in conjunction with the rawtext
option. If chords are turned on by the end of the preamble, no attempt will be
made to balance columns on each page.

192 \DeclareOption{chorded}{\chordson}

193 \DeclareOption{lyric}{\chordsoff}

194 \newcommand\chordson{\SB@chordedspectrue\SB@chordson}

195 \newcommand\chordsoff{\SB@chordedspectrue\SB@chordsoff}

196 \newcommand\SB@chordson{},

197 \ifrawtext¥

198 \SBQ@errrtopt

199 \else},

200 \chordedtrue\lyricfalse,

201 \let\SB@bracket\SB@chord,

202 \let\SB@rechord\SB@@rechord,

203 \1let\SB@ch\SB@ch®@on},

204 \ifSB@measurespec

205 \ifmeasures\SB@measureson\else\SB@measuresoff\fi%
206 \elsel,

207 \SB@measureson},

208 \fi¥%

209 \ifSB@preamble\def\colbotglue{\z@\@plus.5\textheight}\fi},
210 \SB@setbaselineskip

211 \fi%

212 }

213 \newcommand\SB@chordsoff{/

214 \chordedfalse\lyrictruey

215 \def\SB@bracket##1]{\ignorespacesl}/
216 \let\SB@rechord\relaxy

217 \1let\SB@ch\SB@chQoff},

218 \ifSB@measurespec},

219 \ifmeasures\SB@measureson\else\SB@measuresoff\fiJ,
220 \else,

221 \SB@measuresoffy,

222 \fi%

223 \ifSB@preamble\let\colbotglue\z@skip\fi},
224 \SB@setbaselineskip/
225 }

(Default: showmeasures if chorded, nomeasures otherwise) Determines whether
measure bars and meter notes should be shown. Option can be set in the
\usepackage line or toggled elsewhere with the \measureson and \measuresoff
macros.

226 \DeclareOption{showmeasures}{\measureson}
227 \DeclareOption{nomeasures}{\measuresoff}

98

228 \newcommand\measureson{\SB@measurespectrue\SBCmeasureson}
229 \newcommand\measuresoff{\SB@measurespectrue\SB@measuresoff}
230 \newcommand\SB@measureson{

231 \measurestruel,

232 \let\SB@mbar\SB@makembar},

233 \ifchorded’

234 \let\SB@mch\SB@mch@onY,

235 \else%

236 \let\SB@mch\SB@mch®@m?,

237 \fi%

238 \ifSB@inverse\SB@loadactives\fiJ,
239 \ifSB@inchorus\SB@loadactives\fi}
240 }

241 \newcommand\SB@measuresoff{}

242 \measuresfalse},

243 \let\SB@mbar\@gobbletwo

244 \ifchorded’,

245 \let\SB@mch\SB@ch®@on,

246 \elseY

247 \1let\SB@mch\SB@ch@offY,

248 \fi%

249 \ifSB@inverse\SB@loadactives\fi%
250 \ifSB@inchorus\SB@loadactives\fi}
251 }

transposecapos (Default: off) If set, the \capo macro transposes the song instead of printing a
note to use a capo. Use this option to generate a chord book for pianists who have
trouble transposing or guitarists who don’t have capos.

252 \DeclareOption{transposecapos}{\transcapostrue}

noscripture (Default: off) Inhibits the display of scripture quotes. This option can also be
\scriptureon toggled on and off anywhere with the \sciptureon and \scriptureoff macros.
\scriptureoff 553 \DeclareOption{noscripture}{\SBQomitscriptrue}
254 \newcommand\scriptureon{\SB@omitscripfalse}
255 \newcommand\scriptureoff{\SB@omitscriptrue}

onesongcolumn (Default: onesongcolumn is the default if generating slides or rawtext, twosong-
twosongcolumns columns otherwise) The number of columns per page is specified using the
\onesongcolumn following package options and macros. In mode it must remain set to one
\twosongcolumns column per page. The entire page-making system can be turned off by setting the
\songcolumns number of columns to zero. This will cause each song to be contributed to the
current vertical list without any attempt to form columns; the enclosing environ-
ment must handle the page layout. Probably this means that \repchoruses will
not work, since an external package won’t know to insert repeated choruses when
building pages.
256 \DeclareOption{twosongcolumns}{\SB@numcols\tw@}
257 \DeclareOption{onesongcolumn}{\SB@numcols\@ne}
258 \newcommand\songcolumns [1]{/

99

259 \SB@cnt#1\relax},

260 \ifnum\SB@cnt=\SB@numcols\else’,

261 \ifSB@preamble\else{\SB@clearpage}\fi/
262 \fi%

263 \SB@numcols\SB@cnt}

264 \ifnum\SB@numcols>\z@J,

265 \SB@colwidth-\columnsep’

266 \multiply\SB@colwidth\SB@numcolsY
267 \advance\SB@colwidth\columnsepy
268 \advance\SB@colwidth\textwidth
269 \divide\SB@colwidth\SB@numcolsy
270 \else%

271 \ifrepchorus\SB@warnrc\fi},

272 \fij

273 }

274 \newcommand\onesongcolumn{\songcolumns\@ne}
275 \newcommand\twosongcolumns{\songcolumns\tw@}

\includeonlysongs Display only a select list of songs and ignore the rest.

\songlist 276 \newcommand\songlist{}
277 \newcommand\includeonlysongs [11{%
278 \1fSB@songsenv\SBQerrpl\else,

279 \partiallisttrue’,

280 \renewcommand\songlist{#1}%
281 \fi%

282 }

\nosongnumbers The user can turn off song numbering with the following macro.

283 \newcommand\nosongnumbers{\setlength\songnumwidth\z@}

\noversenumbers The user can turn off verse numbering with the following macro.

284 \newcommand\noversenumbers{/,

285 \renewcommand\printversenum[1]{}%
286 \setlength\versenumwidth\z@},

287 }

\repchoruses Using \repchoruses causes choruses to be automatically repeated on subsequent
\norepchoruses pages of the song. The feature requires e-TEX because the supporting code needs
an extended mark register class.

288 \ifSBQetex
289 \newcommand\repchoruses{/

290 \ifnum\SB@numcols<\@ne\SB@warnrc\fi¥
291 \repchorustrue,

292}

293 \else

294 \newcommand\repchoruses{\SBQerretex}
295 \fi

296 \newcommand\norepchoruses{\repchorusfalse}

60

\sepverses

\SB@songbox

\SB@numcols
\SB@colnum

\SB@colbox

\SB@pgbox

\SB@mrkbox

The following penalty settings cause verses and choruses to be separated onto
different slides when in slides mode, except that consecutive choruses remain
together when they fit.

297 \newcommand\sepverses{/,

208 \vvpenalty-\@MJ,

299 \ccpenalty100 %

300 \vcpenalty\vvpenalty’

301 \cvpenalty\vvpenalty%

302 \let\colbotglue\@flushglue,
303 }

Some option settings, margins, and other lengths are finalized at the end of
the preamble. That code is below.

304 \AtBeginDocument{

If the user hasn’t set the \versesep, set it to the default.
305 \SB@setversesep

Initialize page layout algorithm.
306 \songcolumns\SB@numcols

Macros used after this point occur outside the preamble.

307 \SB@preamblefalse
308 }

15.4 Page-builder

The following macros handle the building of pages that contain songs. They
compute where best to place each song (e.g., whether to place it in the current
column or move to the next column or page). The output routines for generating
a partial list of songs in a specified order also can be found here.

The most recently processed song (or scripture quotation) is stored in this box.
309 \SB@newbox\SB@songbox

Reserve two count registers to hold the total number of columns and the current
column number, respectively.

310 \SB@newcount\SB@numcols\SB@numcols\tw@
311 \SB@newcount\SB@colnum

Reserve a box register to hold the current column in progress.
312 \SB@newbox\SB@colbox

Reserve a box register to hold the current page in progress.
313 \SB@newbox\SB@pgbox

Reserve a box register to hold marks that migrate out of songs as they get split
into columns and pages.

314 \SB@newbox\SB@mrkbox

61

)

\SBemaxmin The following helper macro takes the max or min of two dimensions. If (arg2)="“<”,
it sets (argl) to the maximum of (argl) and (arg3). If (arg2)=“>" it sets (argl)
to the minimum of (arg?) and (arg3).

315 \newcommand\SB@maxmin [3] {\ifdim#1#2#3#1#3\fi}

\SBemkpage The following macro is the heart of the page-building engine. It splits the contents
of a box into a page of columns. If \repchoruses is active, the contents of
\SB@chorusbox are additionally inserted into fresh columns created during the
spitting process. The macro arguments are:

1. an integer (positive or zero) indicating whether box b should be fully emptied
and committed as columns (if positive), or whether its final less-than-column-
height remainder should be reserved as an in-progress column (if zero);

2. the box b to split;

3. a count register ¢ equaling the column index (zero or greater) where the
content of b is to begin; and

4. the desired column height.

Box b is split and ¢ is incremented until ¢ reaches \SB@numcols or b is emptied.
If b is emptied and the first argument is 0, the final column is not contributed;
instead it is left in b and i is left equal to the index of the column that would have
been added if b had been emptied. This allows the next call to reconsider whether
to end the current column here or add some or all of the next contribution to it.
Otherwise, if b is emptied and the first argument is positive, the final column is
contributed and 7 is set to one greater than the index of that column. (If ¢ reaches
\SB@numcols before b is emptied, the first argument is ignored.)

Box b and count register ¢ are globally modified. If \SB@updatepage is not
redefined, boxes \SB@pgbox and \SB@mrkbox are also globally modified based on
the results of the split.

The implementation takes two special steps to avoid pre-committing in-progress
columns (when the first macro argument is zero): First, the final split that empties
box b is “undone” by reverting to a backup copy made before each split. Second,
any underfull box warnings for this final split are suppressed by temporarily adding
infinite-stretch \vfil glue to the bottom of the box. This strategy preserves
underfull and overfull box warnings for the columns that are actually committed,
but suppresses faux warnings for the last split that is undone.

316 \newcommand\SB@mkpage [4]{%

317 \ifvoid#2\else\begingroup’

318 \edef\SBO@temp{\ifnum#2=\SBO@box\SB@boxii\else\SB@box\fil}%

319 \edef\SB@tempii{\ifnum#2=\SB@boxiii\SB@boxii\else\SB@boxiii\fil}},

320 \splitmaxdepth\maxdepth\splittopskip\z@skip/

321 \ifnum#1=\z0\global\setbox#2\vbox{\unvbox#2\vEil}\fi},
322 \loop\ifnum#3<\SBOnumcols

323 \ifnum#1=\z@\setbox\SB@tempii\copy#2\fi%

324 \setbox\SBQtemp\vsplit#2to#4\relax,

62

\SB@migrate

\SBQupdatepage

\SB@droppage

325 \ifvoid#2},

326 \ifnum#1=\z@%

327 \global\setbox#2\box\SBOtempiiY,

328 \else’

329 \SB@updatepage’

330 \global\advance#3\0@neY,

331 \fi}

332 #3\SB@numcolsy

333 \elsey,

334 \SBQupdatepage

335 \global\advance#3\@ne%

336 \ifrepchorus\ifvoid\SB@chorusbox\else},
337 \SB@insertchorus#2,

338 \fi\fi}

339 \fi%

340 \repeat?

341 \ifnum#1=\z@\global\setbox#2\vbox{\unvbox#2\unskip}\£fiJ,
342 \endgroup\fi%

343 }

Migrate a mark out of a recently split vertical list, but do not insert superfluous
empty marks that may override previous marks.

344 \newcommand\SB@migrate [1]{/

345 \SB@toks\expandafter{#1}J

346 \edef\SB@temp{\the\SB@toks}/

347 \ifx\SB@temp\@empty\else\mark{\the\SB@toks}\fiJ

348 }

Update boxes \SB@pgbox and \SB@mrkbox immediately after splitting the contents
of \SB@colbox.

349 \newcommand\SBQupdatepage{’
350 \global\setbox\SB@mrkbox\vbox{/

351 \unvbox\SB@mrkbox%

352 \SB@migrate\splitfirstmarky

353 \SB@migrate\splitbotmark,

354 Y

355 \global\setbox\SB@pgbox\hbox{%
356 \SB@dimen\SB@colwidth%

357 \advance\SB@dimen\columnsep?,
358 \multiply\SB@dimen\SB@colnum
359 \advance\SB@dimen-\wd\SB@pgbox7,
360 \unhbox\SB@pgbox’

361 \ifdim\SB@dimen=\z@\else\hskip\SB@dimen\relax\fi},
362 \box\SB@temp%

363 %

364 }

This alternate definition of \SB@updatepage drops the just-created page instead
of contributing it. This allows \SB@mkpage to be called by the song-positioning
algorithm as a trial run without outputting anything.

63

365 \newcommand\SB@droppage{\setbox\SB@temp\box\voidb@x}

\SBeoutput This is the main output routine for the page-builder. It repeatedly calls \SB@mkpage,
emitting pages as they are completed, until the remaining content of box
\SB@colbox is not enough to fill a column. If the macro argument is 0, this
final, in-progress column is left unfinished, pending future contributions. If the
argument is positive, the final material is committed as a column. If the argument
is two or greater, the entire in-progress page is also committed and the column
number reset.

366 \newcommand\SB@output [1]{/,
367 \ifnum\SBOnumcols>\z@\begingroup/

368 \loop%

369 \SB@dimen\textheighty

370 \ifinner\else\advance\SB@dimen-\pagetotal\fi},
371 \SB@mkpage#1\SBA@colbox\SB@colnum\SBA@dimen,

372 \SB@testfalse\SB@testiitrue}

373 \ifnum#1>\@ne\ifvoid\SB@colbox\ifnum\SB@colnum>\z@%
374 \SB@testtrue\SBQtestiifalse},

375 \fi\fi\fi%

376 \ifnum\SB@colnum<\SB@numcols\SB@testiifalse\else\SB@testtrue\fi},
377 \ifSB@test},

378 \unvbox\SB@mrkbox%

379 \ifinner\else\kern\z@\fi%

380 \box\SB@pgbox

381 \ifinner\else\vfil\break\vskip\vsize\relax\fiJ
382 \global\SB@colnum\z@%

383 \fi%

384 \ifSB@testii\repeat,

385 \endgroup\else,

386 \unvbox\SB@colbox\unskip%

387 \fi%

388 }

\SBeputboxes Create a vertical list consisting of the already committed contents of the current
column plus the most recently submitted song box. The KTEX primitive that
should be used to contribute each box is specified in the first argument.

389 \newcommand\SB@putboxes [1]{%

390 \SB@dimen\ifnum\SB@numcols>\z@\ht\SB@colbox\else\p@\fi%
391 #1\SBQcolbox}

392 \ifdim\SB@dimen>\z@%

393 \SB@breakpoint\spenalty’
394 \ifdim\sbarheight>\z@,

395 \vskip-\sbarheight\relax/
396 \fi%

397 \fi%

398 #1\SB@songbox’

399 }

64

\SB@nextcol Force n column breaks, where n is given by the first argument. The first created
column is finished with the glue specified in the second argument. When the second
argument is \@flushglue, this forces a break that leaves whitespace at the bottom
of the column. When it’s \colbotglue, it acts like a natural column break chosen
by the page-breaker. However, if the current column is empty, \@flushglue is
always used so that an empty column will result.

400 \newcommand\SB@nextcol [2]{%
401 \ifnum#1>\z@J,

402 \ifnum\SB@numcols>\z@},

403 \global\setbox\SB@colbox\vbox{%
404 \SB@cnt#1\relaxy

405 \SB@dimen\ht\SB@colbox}
406 \unvbox\SB@colbox}

407 \unskip%

408 \ifdim\SB@dimen>\z@%

409 \vskip#2\relax

410 \break’,

411 \advance\SB@cnt\m@ne},
412 \fi%

413 \loop\ifnum\SB@cnt>\z0%
414 \nointerlineskip’,

415 \null%

416 \vfill

417 \break},

418 \advance\SB@cnt\m@neY,
419 \repeat’

420 o

421 \SB@output1’

422 \else%

423 \ifnum\lastpenalty=-\@M\null\fi%
424 \break}

425 \fi%

426 \fi}

427 }

\SB@selectcol This is the entrypoint to the song-positioning algorithm. It gets defined by
\songpos to either \SB@@selectcol (below) or \relax (when song-positioning is
turned off).

428 \newcommand\SB@selectcol{}

\SB@@selectcol Songs should be squeezed in wherever they fit, but breaking a column or page
within a song should be avoided. The following macro outputs zero or more column
breaks to select a good place for \SB@songbox to be contributed to the current (or
the next) page. The number of column breaks is determined by temporarily setting
\SBQupdatepage to \SB@droppage and then calling the \SB@mkpage algorithm
under various conditions to see how many columns it would contribute if we start
the current song at various positions.

429 \newcommand\SB@@selectcol{)

65

\SB@spbegnew

\SB@spextold

\SB@spextnew

\SB@spdblpg

430 \begingroup’

431 \SB@cnt\z@Y

432 \vbadness\@M\vfuzz\maxdimeny,

433 \let\SBQupdatepage\SB@droppage’

434 \SB@dimen\textheight,

435 \ifinner\else\advance\SB@dimen-\pagetotal\fi},
436 \setbox\SB@boxii\vbox{\SB@putboxes\unvcopyl}’
437 \SB@cntii\SB@colnumj,

438 \SB@mkpage0\SB@boxii\SB@cntii\SB@dimeny,

439 \SB@spos’,

440 \global\SB@cnt\SB@cnt%

441 \endgroup’
442 \SB@nextcol\SB@cnt\colbotglue’
443 }

Begin a trial typesetting of the current song on a fresh page to see if it fits within
a page.

444 \newcommand\SB@spbegnew{’

445 \setbox\SB@boxiii\copy\SB@songbox

446 \SB@cntii\z@Y

447 \SB@mkpage0\SB@boxiii\SB@cntii\textheightY

448 }

Tentatively extend the song previously typeset on the current even page to the
next odd page to see whether it fits on a double-page. If the current page is odd-
numbered, do nothing since extending the song to the next page would introduce
a page-turn.

449 \newcommand\SB@spextold{’

450 \ifodd\c@page\else,

451 \SB@cntii\z@

452 \SB@mkpage0\SB@boxii\SB@cntii\textheightY
453 \fi%

454 }

Extend the trial typesetting started with \SB@spbegnew to a second page to see
whether the song fits on a fresh double-page.
455 \newcommand\SB@spextnew{
456 \SB@cntii\z@}
457 \SB@mkpageO0\SB@boxiii\SB@cntii\textheight,
458 }

Compute the number of column breaks required to shift the current song to the
next double-page if the result of the last test run fits within its page (as indicated
by counter \SB@cntii). Otherwise leave the requested number of column breaks
set to zero.

459 \newcommand\SB@spdblpg{%

460 \ifnum\SB@cntii<\SB@numcolsy

461 \SB@cnt\SB@numcols

462 \advance\SB@cnt-\SB@colnum/,

66

\SB@sposi

\SB@sposii

\SB@sposiii

463 \if@twoside\ifodd\c@page\else,

464 \advance\SB@cnt\SB@numcolsY
465 \fi\fi%

466 \fil

467 }

This is the level-1 song positioning algorithm. It moves songs to the next double-
page only if doing so would avoid a page-turn that would otherwise appear within
the song.

468 \newcommand\SB@sposi{%

469 \ifnum\SB@cntii<\SB@numcols\else\if@twoside},

470 \SB@spextold},

471 \fi\fi},

472 \ifnum\SB@cntii<\SB@numcols\else,

473 \SB@spbegnew?,

474 \ifnum\SB@cntii<\SB@numcols\else\if@twosideY,
475 \SB@spextnewy,

476 \fi\fiY

477 \SB@spdblpg%

478 \fi},

479 }

This is the level-2 song-positioning algorithm. It moves songs to the next page
or double-page if doing so avoids a page-break or page-turn that would otherwise
appear within the song.

480 \newcommand\SB@sposii{’
481 \ifnum\SB@cntii<\SB@numcols\else’,

482 \SB@spbegnew/,

483 \ifnum\SB@cntii<\SB@numcolsY
484 \SB@cnt\SB@numcols’

485 \advance\SB@cnt-\SB@colnumy,
486 \elsel,

487 \if@twoside,

488 \SB@spextold’

489 \ifnum\SB@cntii<\SB@numcols\else},
490 \SB@spextnew

491 \SB@spdblpg

492 \fil

493 \fi%

494 \fi%

495 \fi%

496 }

This is the level-3 song-positioning algorithm. It moves songs to the next column,
the next page, or the next double-page if doing so avoids a column-break, page-
break, or page-turn that would otherwise appear within the song.

497 \newcommand\SB@sposiii{%

498 \ifnum\SB@cntii>\SB@colnumj,
499 \SB@cnt\SB@colnumy

67

\songpos

\SB@spos

\SB@clearpage

500 \advance\SB@cnt\@ne’

501 \ifnum\SB@cnt<\SB@numcolsY

502 \setbox\SB@boxiii\copy\SB@songbox,
503 \SB@mkpage0\SBGboxiii\SB@cnt\SBedimen,
504 \advance\SB@cnt\m@neY,

505 \fi%

506 \ifnum\SB@cnt>\SB@colnumy,

507 \SB@cnt\z@Y%

508 \SB@sposii}

509 \else%

510 \SB@cnt\@ne},

511 \fi%

512 \fi%

513 }

This is the macro by which the user adjusts the aggressiveness level of the song-
positioning algorithm. See the macros above for what each level does.

514 \newcommand\songpos [1]{/
515 \ifcase#1J,

516 \let\SB@selectcol\relax},

517 \let\SB@spos\relax/

518 \or’

519 \let\SB@selectcol\SB@@selectcol,
520 \1let\SB@spos\SB@sposi%

521 \or%

522 \let\SB@selectcol\SB@@selectcol,
523 \let\SB@spos\SB@sposiil

524 \or

525 \let\SB@selectcol\SB@@selectcol,
526 \1let\SB@spos\SB@sposiii}

527 \else,

528 \SBQerrspos’,

529 \fi%

530 }

The \SB@spos macro gets redefined by \songpos above depending on the current
song-positioning aggressiveness level. By default it is set to level 3.

531 \newcommand\SB@spos{}
532 \songpos\thre@

Output all contributed material as a new page unless there is no contributed mate-
rial. In that case do nothing (i.e., don’t produce a blank page). The \SB@colbox is
tested for zero height and depth rather than voidness, since sometimes it contains
zero-length \splittopskip glue.

533 \newcommand\SB@clearpage{’

534 \SB@testtruel,

535 \ifvoid\SB@pgbox’

536 \ifdim\ht\SB@colbox=\z@\ifdim\dp\SB@colbox=\z@}

537 \SB@testfalse,

68

\SB@cleardpage

\SB@stype

\SB@stypcol

\SB@styppage

538 \fi\fi%

539 \fi%

540 \ifSB@test’

541 \SB@cnt\SB@numcolsY

542 \advance\SB@cnt-\SB@colnum}

543 \SB@nextcol\SB@cnt\lastcolgluey,
544 \SB@output2’

545 \fi%

546 }

Like \SB@clearpage but shift to a fresh even-numbered page in two-sided doc-
uments. Note that this differs from TEX’s \cleardoublepage, which shifts to
odd-numbered pages. Song books prefer starting things on even-numbered pages
because this maximizes the distance until the next page-turn.

547 \newcommand\SB@cleardpage{’

548 \SBQclearpage’,

549 \if@twoside\ifodd\c@page/

550 \SB@nextcol\SB@numcols\@flushglue,
551 \SB@output?2,

552 \fi\fi},

553 }

There are two song content submission types: column- and page-submissions. Page-
submissions are page-width and go atop fresh pages unless the current page has
only page-width material so far. Column-submissions are column-width and start a
new page only when the current page is full. This macro gets set to the desired type
for the current submission. Mostly it stays set to the default column-submission
type.

554 \newcommand\SB@stype{\SB@stypcol}

Column-submissions contribute the contents of \SB@songbox to either the current
column or the next column or page, depending on where it best fits.

555 \newcommand\SB@stypcol{/,
556 \ifnum\SB@numcols>\z@}

557 \SB@selectcol

558 \global\setbox\SB@colbox\vbox{\SBeputboxes\unvbox}’
559 \SB@output0%

560 \elsel

561 \unvbox\voidb@x7

562 \SB@breakpoint\spenalty’
563 \ifdim\sbarheight>\z@}

564 \vskip-\sbarheight\relaxy
565 \fi%

566 \unvbox\SB@songbox

567 \fi%

568 }

Page-submissions go directly to the top of the nearest fresh page unless the current
page has all page-width material so far.

69

\SB@sgroup

\SB@groupcnt

\SB@clearpboxes

\SB@partbox

\SB@submitpart

Implementation notes: The \null is needed because the page builder consults
\pagetotal, which isn’t updated by TEX until a box is contributed (\unvbox
doesn’t count). Both \nointerlineskips are needed because \unvbox fails to
update \prevdepth, and it doesn’t make sense to inherit its value from whatever
preceeded this contribution. Authors who want interline glue must therefore insert
it explicitly at the bottom of their contributed text.

569 \newcommand\SB@styppage{’%
570 \ifnum\SB@numcols>\z@%

571 \SB@clearpage%

572 \unvbox\SB@songbox

573 \nointerlineskip\nully,
574 \else%

575 \unvbox\SB@songbox

576 \fi%

577 \nointerlineskip

578 }

This macro controls whether songs submitted to the page-builder are actually
contributed to the final document when using \includeonlysongs to generate a
partial list. If \SB@sgroup is empty, then the song is silently dropped. Otherwise
it is contributed only if \SB@sgroup is a member of \songlist.

579 \newcommand\SB@sgroup{}

580 \let\SB@sgroup\Qempty

This counter assigns a unique integer to each item of a group. Environments that
come before the group’s song are numbered decreasingly from —1. The song itself
has number 0. Environments that come after the song are numbered increasingly
from 1.

581 \SB@newcount\SBOgroupcnt

This dynamically constructed macro clears the content of all boxes created by the
workings of \includeonlysongs.

582 \newcommand\SB@clearpboxes{}

Save a box of full-song or chorus material for later output when producing a partial
list using \includeonlysongs.

583 \newcommand\SB@partbox [1]{/

584 \SB@newbox#1%,

585 \SB@app\gdef\SB@clearpboxes{\setbox#1\box\voidb@x},

586 \global\setbox#1\box/

587 }

When a song completes and we’re generating a partial list, save the song in a box
so that it can be submitted at the end of the section in the order specified by
\includeonlysongs.

588 \newcommand\SB@submitpart{’

589 \ifx\SB@sgroup\Qempty\else’

590 \SB@testfalse

70

591 \@for\SB@temp:=\songlist\do{\ifx\SBOtemp\SB@sgroup\SBQtesttrue\fil}y,

592 \ifSB@testY

593 \edef\SBOtempii{\SB@sgroup @\the\SB@groupcntl}
594 \expandafter\SBOpartbox

595 \csname songbox@\SB@tempiil\endcsname\SB@songbox
596 \global\expandafter\let,

597 \csname stype@\SB@tempiilendcsname\SB@stype,
598 \ifrepchorus\ifvoid\SB@chorusbox\else,

599 \expandafter\SB@partbox

600 \csname chbox@\SBQ@tempii\endcsname\SB@chorusboxy
601 \fi\fi%

602 \fi%

603 \global\advance\SB@groupcnt

604 \ifnum\SB@groupcnt<\z@\m@ne\else\@ne\fi%

605 \fi%

606 \setbox\SB@songbox\box\voidb@x
607 \setbox\SB@chorusbox\box\voidbe@x?’,
608 }

\SB@submitsong Submit the most recently finished song (or block of other vertical material) for
output. If we're generating a partial list of songs, save it in a box instead of
submitting it here. (The saved boxes will be submitted in the requested order at
the end of the songs section.)

609 \newcommand\SB@submitsong{%
610 \ifpartiallist\SB@submitpart\else\SB@stype\fi%
611 }

\SB@submitenv Submit the \SB@envbox box as a page-width contribution.
612 \newcommand\SB@submitenv{/,
613 \begingroup’
614 \1let\SB@songbox\SB@envbox
615 \SB@styppage%
616 \endgroup’
617 }

\SB@songlistbrk These macros define the words that, when placed in a \songlist, force a column
\SB@songlistnc break at that point. Using brk produces a soft break (like \brk) that won’t leave
\SB@songlistcp whitespace at the bottom of the broken column in lyric books. Using nextcol

\SB@songlistcdp produces a hard break (like \nextcol) that may insert whitespace to finish the

column. Using sclearpage moves to the next page if the current page is nonempty.
Using scleardpage moves to the next double-page if the current double-page is
nonempty.

618 \newcommand*\SB@songlistbrk{brk}

619 \newcommand*\SB@songlistnc{nextcol}

620 \newcommand*\SB@songlistcp{sclearpage}

621 \newcommand*\SB@songlistcdp{scleardpage}

71

\commitsongs

\SBefinloop

If we're generating only a partial list, then wait until the end of the section and

then output all the songs we saved in boxes in the order specified.

622 \newcommand\commitsongs{%

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651 }

While contributing saved material included by \includeonlysongs, this macro
contributes each series of boxes grouped together as part of a songgroup environ-

\ifpartiallist
\ifnum\SB@numcols>\z@}

\@for\SB@temp:=\songlist\do{%
\ifx\SB@temp\SB@songlistnc\SBOnextcol\@ne\@flushglue\else’,
\ifx\SB@temp\SBO@songlistbrk\SB@nextcol\@ne\colbotglue\else’,
\ifx\SB@temp\SB@songlistcp\SB@clearpage\else,
\ifx\SB@temp\SB@songlistcdp\SB@cleardpage\else,

\SB@groupcnt\m@ne\SB@finloop’,
\SB@groupcnt\z@\SB@finloop/
\£i\£i\fi\fi}
Yh
\else%

\@for\SB@temp:=\songlist\do{/
\ifx\SB@temp\SB@songlistnc\viil\break\else,
\ifx\SB@temp\SB@songlistbrk\break\else,
\ifx\SB@temp\SB@songlistcp\clearpage\else
\ifx\SB@temp\SB@songlistcdp¥

\clearpage%
\ifodd\c@page\null\newpage\fi%
\else
\SB@groupcnt\m@ne\SBefinloop%
\SB@groupcnt\z@\SBefinloop%
\fi\£i\fi\fi}
Yh
\fi%
\SB@clearpboxes
\fi%
\SB@clearpage’

ment.

652 \newcommand\SB@finloop{%

653
654
655
656
657
658
659
660
661
662
663
664

\loop\edef\SB@tempii{\SB@temp @\the\SBQgroupcnt}y
\expandafter\ifxJ,
\csname songbox@\SB@tempiil\endcsname\relax\else,
\setbox\SB@songbox\expandafter\copy%
\csname songbox@\SB@tempii\endcsname?,
\expandafter\ifx\csname chbox@\SBQ@tempii\endcsname\relaxy,
\repchorusfalse,
\else%
\repchorustruey
\setbox\SB@chorusbox\expandafter\copy’
\csname chbox@\SB@tempii\endcsname,

\fi%

72

665 \csname stype@\SBQ@tempiilendcsname,

666 \advance\SBOgroupcnt\ifnum\SB@groupcnt<\z@\m@ne\else\@ne\fi},
667 \repeat
668 ¥

\SB@insertchorus Insert a chorus into the first marked spot in the box given in the first argument.
This is usually achieved by splitting the box at the first valid breakpoint after the
first \SB@cmark in the box. The box is globally modified.

669 \newcommand\SB@insertchorus [1]1{{/%

670 \vbadness\@M\vfuzz\maxdimeny,

671 \setbox\SB@box\copy#1/

672 \setbox\SB@box\vsplit\SB@box to\maxdimen},

673 \edef\SB@temp{\splitfirstmarks\SB@nocmarkclass}/,
674 \ifx\SB@temp\SB@nocmark\else,

675 \edef\SB@temp{\splitfirstmarks\SB@cmarkclass}/,

676 \ifx\SB@temp\SBA@cmark,

677 \SB@dimen4096\p@%

678 \SB@dimenii\maxdimeny

679 \SB@dimeniii\SB@dimen}

680 \loop/

681 \SB@dimeniii.5\SB@dimeniii%

682 \setbox\SB@box\copy#1%

683 \setbox\SB@box\vsplit\SB@box to\SB@dimen},

684 \edef\SB@temp{\splitfirstmarks\SB@cmarkclassl}y,
685 \ifx\SB@temp\SBQcmarky,

686 \SB@dimenii\SB@dimen},

687 \advance\SB@dimen-\SB@dimeniiiy

688 \else’,

689 \advance\SB@dimen\SB@dimeniii}

690 \fif%

691 \ifdim\SB@dimeniii>2\p@\repeaty

692 \setbox\SB@box\vsplit#1to\SB@dimenii%,

693 \global\setbox#1\vbox{/

694 \unvbox\SB@box\unskip

695 \SB@inversefalse\SB@prevversetrue\SB@stanzabreak’,
696 \SB@putbox\unvcopy\SB@chorusbox,

697 \SB@inversetrue\SB@prevversefalse\SBO@stanzabreak’,
698 \unvbox#1%

699 Y

However, if the first mark is a \SB@lastcmark, it means that this chorus should go
after the last verse in the song. There is no valid breakpoint there, so to get a chorus
into that spot, we have to do a rather ugly hack: We pull the bottom material off
the box with \unskip, \unpenalty, and \lastbox, then insert the chorus, then
put the bottom material back on. This works because the high-level structure of
the bottom material should be static. Even if the user redefines \makepostlude,
the new definition gets put in a single box that can be manipulated with \lastbox.
However, if we ever change the high-level structure, we need to remember to change
this code accordingly.

73

\nextcol

\sclearpage

\scleardpage

700 \else\ifx\SBQ@temp\SBQ@lastcmarky,

701 \global\setbox#1\vbox{%

702 \unvbox#1%

703 \unskip%

704 \ifdim\sbarheight>\z@%

705 \setbox\SB@box\lastbox

706 \unskip\unpenalty

707 \fi%

708 \setbox\SB@box\lastbox’

709 \unskip\unskip%

710 \SB@inversefalse\SB@prevversetrue\SB@stanzabreak’,
711 \marks\SB@nocmarkclass{\SB@nocmark}’

712 \unvcopy\SB@chorusbox?,

713 \vskip\versesep\vskip\beforepostludeskip\relax
714 \nointerlineskip\box\SB@boxY

715 \ifdim\sbarheight>\z@}

716 \nobreak\vskip2\p@\@plus\p@/,

717 \hrule\@height\sbarheight\@width\SB@colwidth,
718 \fil

719 Yh

720 \fi\fij

721 \fi%

722 }}

End the current column (inserting vertical space as needed). This differs from

column breaks produced with \brk, which does not introduce any empty vertical
space.

723 \newcommand\nextcol{/
724 \@ifstar{\SB@nextcol\@ne\@flushgluel}

725 {\ifpartiallist\else\SB@nextcol\@ne\@flushglue\fi}}
726 }
Move to the next page if the current page is nonempty.

727 \newcommand\sclearpage{’,
728 \@ifstar\SB@clearpage{\ifpartiallist\else\SB@clearpage\fil}}
729 }

Move to the next even-numbered page if the current page is odd or nonempty.

730 \newcommand\scleardpage{%
731 \@ifstar\SB@cleardpage{\ifpartiallist\else\SB@cleardpage\fil}y,
732 }

15.5 Songs

The following macros handle the parsing and formatting of the material that begins
and ends each song.

74

\SB@lop
\SB@@lop
\SB@emptylist
\SB@ifempty

\SB@titlelist
\SB@titletail

\songtitle

\resettitles

\nexttitle

\foreachtitle

\ifSB@insong
\ifSB@intersong
\ifSB@inverse
\ifSB@inchorus

The following macros were adapted from Donald Knuth’s The TgXbook, for manip-
ulating lists of the form \\item1\\item2\\...\\itemN\\.

733 \newcommand\SB@lop [1] {\expandafter\SB@@lop\the#1\SB@@lop#1}

734 \newcommand\SB@@lop{}

735 \def\SB@@Lop\\#1\\#2\SBe@lop#3#4{\global#3{\\#2}\global#4{#1}}

736 \newcommand*\SB@emptylist{\\}

737 \newcommand\SB@ifempty [3]{%

738 \edef\SB@temp{\the#1}},

739 \ifx\SB@temp\SB@emptylist#2\else#3\fi},

740 }

These registers hold the full list of titles for the current song and the tail list of
titles that has not yet been iterated over.

741 \SB@newtoks\SB@titlelist
742 \SB@newtoks\SB@titletail

The \songtitle macro will initially hold the primary title of the current song.
The user can iterate over titles using \nexttitle or \foreachtitle.

743 \newcommand\songtitle{}

Initialize the title list iterator.

744 \newcommand\resettitles{%

745 \global\SB@titletail\SB@titlelist,
746 \nexttitle}

747 }

Advance the title list iterator to the next title.

748 \newcommand\nexttitle{’
749 \SB@ifempty\SB@titletail{J

750 \global\let\songtitle\relax
751 Y%

752 \SB@lop\SB@titletail\SBO@toks%
753 \edef\songtitle{\the\SBOtoks}/
754}

755 }

Execute a block of code for each remaining title in the title list.

756 \newcommand\foreachtitle[1]{%
757 \ifx\songtitle\relax\else},

758 \loop#1\nexttitle\ifx\songtitle\relax\else\repeat},
759 \fi%
760 ¥

To help the user locate errors, keep track of which environments we’re inside
and immediately signal an error if someone tries to use a song command inside a
scripture quotation, etc.

761 \newif\ifSB@songsenv\SB@songsenvfalse
762 \newif\ifSB@insong\SBQ@insongfalse

(0]

\SB@closeall

\SB@rawrefs
\songauthors
\songcopyright
\songlicense

\songrefs

\setlicense

\newsongkey
\SB@clearbskeys

763 \newif\ifSB@intersong\SB@intersongfalse
764 \newif\ifSB@inverse\SB@inversefalse
765 \newif\ifSB@inchorus\SB@inchorusfalse

If an error is detected using one of the above, the following macro will contain
a macro sequence sufficient to end the unclosed environment, hopefully allowing
processing to continue.

766 \newcommand\SB@closeall{}

The current song’s scripture references, authors, copyright info, and copyright
license information are stored in these macros.

767 \newcommand\SB@rawrefs{}

768 \newcommand\songauthors{}

769 \newcommand\songcopyright{}

770 \newcommand\songlicense{}

When the user asks for the song’s scripture references, rather than give them the
raw token list that the author entered, we return a prettier version in which spaces,
dashes, and penalties have been adjusted. The prettier version is stored in the
following control sequence.

771 \newcommand\songrefs{}

The user sets the licensing info for the current song with this command.

772 \newcommand\setlicense{\gdef\songlicense}

Defining a new key for \beginsong is just like the keyval package’s \defineQkey
macro except that we must also define some initializer code for each key. This
provides an opportunity to clear registers before each song. (Otherwise when a
key wasn’t specified, we’d inherit the old values from the previous song.)

773 \newcommand\SB@clearbskeys{}

774 \newcommand\newsongkey [2] {%

775 \SBQapp\gdef\SBQclearbskeys{#2}/,

776 \define@key{beginsong}{#1}%

777 }

Define keys sr, by, cr, 11, index, and ititle for scripture references, authors,
copyright info, licensing info, lyric index entries, and alternate title index entries,
respectively.

778 \newsongkey{sr}{\def\SB@rawrefs{}\gdef\songrefs{}}

779 {\def\SBOrawrefs{#1}\SB@parsesrefs{#1}}

780 \newsongkey{by}{\def\songauthors{}}{\def\songauthors{#1}}

781 \newsongkey{cr}{\def\songcopyright{}}{\def\songcopyright{#13}}
782 \newsongkey{li}{\setlicense{}}{\setlicense{#1}}

783 \newsongkey{index}{}{\indexentry{#1}}

784 \newsongkey{ititle}{}{\indextitleentry{#1}}

76

song
\beginsong
\SB@@beginsong
\SB@bsoldfmt
\SB@@bskvfmt

\SB@@@beginsong

Parse the arguments of a \beginsong macro. The \beginsong macro supports
two syntaxes. The preferred syntax takes the song title(s) as its first argument
and an optional keyval list in brackets as its second argument. A legacy syntax
supports four arguments, all enclosed in braces, which are: the title(s), scripture
references, authors, and copyright info.

785 \newenvironment{song}{\beginsong}{\SB@endsong}
786 \newcommand\beginsong[1]{Y

787 \1fSB@insong\SB@errboo\SB@closeall\fi},
788 \ifSB@intersong\SB@errbor\SB@closeall\fi},
789 \SB@insongtrue},

790 \def\SB@closeall{\endsong}’

791 \SB@parsetitles{#11}/,

792 \global\setbox\SB@songwrites\box\voidb@x},
793 \SB@clearbskeys’

794 \@ifnextchar [\SB@bskvimt\SB@@beginsong?,
795 }

796 \newcommand\SB@@beginsong{’,

797 \@ifnextchar\bgroup\SB@bsoldfmt\SB@@@beginsong
798 }

799 \newcommand\SB@bsoldfmt [3]{%

800 \SB@bskvimt [sr={#1},by={#2}, cr={#3}17

801 }

802 \newcommand\SB@bskvfmt{}

803 \def\SB@bskvimt [#1]{J

804 \setkeys{beginsong}{#1}/,

805 \SB@@@beginsong,

806 }

Begin typesetting a song. Beginning a song involves typesetting the title and other
info, adding entries to the indexes, and setting up the environment in which verses
and choruses reside.

807 \newcommand\SB@@@beginsong{’

808 \global\SB@stanzafalse/,

809 \setbox\SB@chorusbox\box\voidb®@xY

810 \SB@gotchorusfalse},

811 \setbox\SB@songbox\vbox\bgroup\begingroup/

812 \ifnum\SB@numcols>\z@\hsize\SB@colwidth\fi}

813 \leftskip\z@skip\rightskip\z@skip’

814 \parfillskip\@flushglue\parskip\z@skip%

815 \SB@raggedright

816 \global\SB@transposefactor\z@/,

817 \global\SB@cre{\\}/

818 \protected@edef\@currentlabel{\p@songnum\thesongnum}y
819 \setcounter{versenum}{1}%

820 \SB@prevversetrue’,

821 \meter44y,

822 \resettitles’

823 \SB@addtoindexes\songtitle\SB@rawrefs\songauthorsy,
824 \nexttitle,

7

\SB@endsong

825 \foreachtitle{\expandafter\SBQaddtotitles\expandafter{\songtitle}}
826 \resettitles

827 \lyricfont\relax,

828 \SB@setbaselineskip

829 }

Ending a song involves creating the song header (with \makeprelude), creat-

ing the song footer (with \makepostlude), and then assembling everything to-
gether into the \SB@songbox. The box is then submitted to the page-builder via
\SB@submitsong. We do things this way instead of just contributing material di-
rectly to the main vertical list because submitting material song by song allows for
a more sophisticated page-breaking algorithm than is possible with TEX’s built-in
algorithm.
830 \newcommand\SB@endsong{’,
831 \ifSB@insong}

832 \ifSB@inverse\SB@erreov\endverse\fij},

833 \ifSB@inchorus\SB@erreoc\endchorus\fi/,

834 \global\SB@skip\versesep’

835 \unskip%

836 \ifrepchorus\ifvoid\SB@chorusbox\else,

837 \ifSB@prevverse\ifvnumberedy,

838 \marks\SB@cmarkclass{\SB@lastcmark}’

839 \fi\fi}

840 \fi\fi%

841 \endgroup\egroup’,

842 \begingroup’

843 \ifnum\SB@numcols>\z@%

844 \hsize\ifpagepreludes\textwidth\else\SB@colwidth\fi},
845 \fi%

846 \leftskip\z@skip\rightskip\z@skip%

847 \parfillskip\@flushglue\parskip\z@skip\parindent\z@,
848 \global\setbox\SB@envbox\vbox{%

849 \songmarkY

850 \unvbox\SB@songwritesY,

851 \ifpagepreludes\else\ifdim\sbarheight>\z@%

852 \hrule\@height\sbarheight\@width\hsize}

853 \nobreak\vskip5\p@\relax

854 \fi\fi}

855 \resettitles’,

856 \begingroup,

857 \songtarget{\ifnum\c@section=\z0@1\else2\fil}},
858 {song\theSB@songsnum-\thesongnum}y,
859 \endgroup’,

860 \vbox{\makeprelude}y

861 \nobreak\vskip\SB@skip

862 \vskip\afterpreludeskip\relax

863 Y

864 \ifnum\SB@numcols>\z@\hsize\SBQ@colwidth\fi}

865 \global\setbox\SB@songbox\vbox{’

78

866 \ifpagepreludes\else\unvbox\SB@envbox\fi%

867 \unvbox\SB@songbox’,

868 \nobreak\vskip\SB@skip%

869 \vskip\beforepostludeskip\relax,
870 \nointerlineskip

871 \vbox{\makepostludel}’

872 \ifdim\sbarheight>\z@}

873 \nobreak\vskip2\p@\@plus\p@%

874 \nointerlineskip,

875 \hbox{\vrule\@height\sbarheight\@width\hsizel}
876 \fif%

877 Yh

878 \endgroup/,

879 \SB@insongfalsey,

880 \edef\SB@sgroup{\thesongnum}y,

881 \global\SB@groupcnt\z@%

882 \ifpagepreludes\SB@submitenv\fi},

883 \SB@submitsong

884 \ifnum\SB@grouplvl=\z@\let\SB@sgroup\@empty\fi},
885 \stepcounter{songnum}%

886 \elsel,

887 \ifSB@intersong\SB@erreor\SB@closeall,
888 \else\SBQerreot\fi},

889 \fi%

890 }

\SB@setbaselineskip Set the \baselineskip to an appropriate line height.

891 \newcommand\SB@setbaselineskip{/

892 \SB@dimen\f@size\pQ%

893 \baselineskip\SB@dimen\relax},

894 \ifchorded/

895 \setbox\SB@box\hbox{{\printchord{ABCDEFG\shrp\flt/j7}}}7%

896 \advance\baselineskip\ht\SB@box
897 \advance\baselineskip2\p@/
898 \fi%

899 \ifslides’
900 \advance\baselineskip.2\SB@dimen\@plus.5\SB@dimeny,

901 \@minus.2\SB@dimen,

902 \elsel,

903 \advance\baselineskip\z@\@plus.1\SBedimen\relax%
904 \fi%

905 \advance\baselineskip\baselineadj’

906 }

\SBesetversesep Set the \versesep to an appropriate amount if has not already been explicitly set
by the user.
907 \newcommand\SB@setversesep{’
908 \SB@dimen123456789sp’
909 \edef\SB@temp{\the\SB@dimen}%
910 \edef\SB@tempii{\the\versesep}/

79

\makeprelude

911 \ifx\SB@temp\SBOtempii%

912 \begingroup%

913 \lyricfont\relax,

914 \SB@dimen\f@size\pQ%

915 \ifchorded’,

916 \setbox\SB@box\hbox{{\printchord{ABCDEFG\shrp\f1t/j7}}}%
917 \advance\SB@dimen\ht\SB@boxY

918 \fi%

919 \ifslides%

920 \global\versesepl.2\SB@dimen\@plus.3\SB@dimen},

921 \@minus.3\SB@dimen?,

922 \else,

923 \global\versesep.75\SB@dimen\@plus.25\SB@dimenJ,

924 \@minus.13\SB@dimen?,

925 \fi%

926 \endgroup/,

927 \fi%

928 }

Generate the material that begins each song. This macro is invoked at \endsong

so that its code can access song info defined throughout the song.

Note that if you are redefining \makeprelude, you can probably replace
everything below with something much simpler. The code below is lengthy because
it accommodates all of the many different options that various authors may adjust
to customize their books. If you redefine it, you can replace all of this with smaller,
more specialized programming that just outputs the prelude format you desire.

929 \newcommand\makeprelude{’
930 \resettitles)
In slides mode, the title, references, and authors are simply centered on the page
with no song number. Only the first of the song titles is included. The references
and authors only span the middle 50% of the page, since letting them span the
whole page width stretches them out too much and makes their fine print too hard
to read.

931 \ifslides}

932 \hbox to\hsize{{\hfil\stitlefont\relax\songtitle\hfil}}}
933 \vskip5\p@%

934 \hbox to\hsize{}

935 \hfily,

936 \vbox{%

937 \divide\hsize\tw@\parskip\p@\relaxy

938 \centering\small\extendprelude}

939 Yh

940 \hfily,

941 Yh

942 \else)

In non-slides mode, we write the song number in a shaded box to the left (if
\songnumwidth is positive) and everything else in left-justified paragraphs to the
right of it (or centered if \pagepreludes is on). The height of the shaded box that

80

contains the song number depends on which is higher: the natural height of the
song number, or everything else that goes to the right of it. To find out which is
higher, we start by putting the song number in its own box (\SB@boxii).

943 \ifdim\songnumwidth>\z@}

944 \setbox\SB@boxii\hbox{{\SB@colorbox\snumbgcolor{’
945 \hbox to\songnumwidth{%

946 \printsongnum{\thesongnum}\hfilj,

947 Y

948 133y

949 \£fiY%

Now we know the width w of the song number box, so we typeset everything else in

a box (\SB@box) of width ¢ — w, where c is the column width. (If \pagepreludes

is on, we instead use width ¢ — 2w so that the material stays centered on the page.)
950 \setbox\SB@box\vbox{%

951 \ifdim\songnumwidth>\z@}

952 \SB@dimen\wd\SB@boxii%

953 \advance\SB@dimen3\p@/,

954 \ifpagepreludes\multiply\SB@dimen\tw@\fi%
955 \advance\hsize-\SB@dimen},

956 \fi%

957 \ifpagepreludes\centering\else\SB@raggedright\fi},
958 \offinterlineskip\lineskip\p@%

959 {\stitlefont\relax

960 \songtitle\par?,

961 \nexttitle

962 \foreachtitle{(\songtitle)\par}}’

963 \ifdim\prevdepth=\z@\kern\p@\fi%

964 \parskip\p@\relax\tiny%

965 \extendpreludey,

966 \kern\z@,

967 Yh

If the song number is being printed (i.e., \songnumwidth is positive), and its height
is greater than the height of the other material, then we just put \SB@boxii and
\SB@box side-by-side. If the song number is being printed but its height is less,
then we re-typeset it at height equal to the other material, and place the boxes
side-by-side. Finally, if the song number is not being printed at all, we just unbox
\SB@box onto the vertical list.

968 \ifdim\songnumwidth>\z@J

969 \hbox{%

970 \ifdim\ht\SB@boxii>\ht\SB@box

971 \box\SB@boxii%

972 \kern3\p@/,

973 \vtop{\box\SB@box}/

974 \else’

975 \SB@colorbox\snumbgcolor{\vbox to\ht\SB@box{{/
976 \hbox to\songnumwidth{%

977 \printsongnum{\thesongnum}\hfily,
978 Hvfily,

81

\makepostlude

\showauthors

\showrefs

\SB@next
\SB@donext
\SB@dothis

979 Y

980 \kern3\p@J,
981 \box\SB@box%
982 \fi%

983 Y

984 \else%

985 \unvbox\SB@box}
986 \fi%

987 \fi%

988 }

Generate the material that ends each song. The default implementation just
prints the copyright and licensing information (if any) as a single, left-justified,
non-indentended paragraph in fine print.

989 \newcommand\makepostlude{’,

990 \SB@raggedright\baselineskip\z@skip\parskip\z@skip\parindent\z@},

991 \tiny\extendpostlude,

992 }

Display the author information in the prelude. This macro is only called by
\extendprelude, which is only called by \makeprelude; so if you redefine either
of those, you don’t need this. The default implementation prints the authors in
boldface and shortens the spacing after periods so that they don’t look like ends of
sentences.

993 \newcommand\showauthors{/%

994 \setbox\SB@box\hbox{\bfseries\sfcode‘.\@m\songauthors}/,

995 \ifdim\wd\SB@box>\z@\unhbox\SB@box\par\fi%,

996 }

Display the scripture references in the prelude. This macro is only called by
\extendprelude, which is only called by \makeprelude; so if you redefine either
of those, you don’t need this. The default implementation prints the scripture
references in slanted (oblique) font.

997 \newcommand\showrefs{’

998 \setbox\SB@box\hbox{\slshape\songrefs\vphantom, }%

999 \ifdim\wd\SB@box>\z@\unhbox\SB@box\par\fi%

1000 }

Several macros use \futurelet to look ahead in the input stream, and then take
various actions depending on what is seen. In these macros, \SB@next is assigned
the token seen, \SB@dothis is assigned the action to be taken on this loop iteration,
and \SB@donext is assigned the action to be taken to continue (or terminate) the
loop.

1001 \newcommand\SB@next{}

1002 \newcommand\SB@donext{}

1003 \newcommand\SB@dothis{}

82

\SB@nextname Sometimes when scanning ahead we \stringify the name of the next token. When
that happens, the name is stored in this macro for safekeeping.

1004 \newcommand\SB@nextname{}

\SB@appendsp Append an explicit space token (catcode 10) to a token register. This is a useful
macro to have around because inlining this code directly into a larger macro is
harder than it seems: If you write the following code but with an explicit control
sequence instead of #1, then the space immediately following the name will get
stripped by the TEX parser. But invoking the following macro with a control
sequence as an argument works fine, because in that case the explicit space has
already been tokenized when this macro was first defined and won’t be stripped as
it is expanded.

1005 \newcommand\SB@appendsp [1]{#1\expandafter{\the#1 }}

\SB@parsetitles Parse a list of song titles. This just involves removing leading and trailing spaces
from around each title in the \\-separated list.

1006 \newcommand\SB@parsetitles [1]{%
1007 \begingroup’

1008 \global\SB@titlelist{\\}%
1009 \SBetoks{}%

1010 \let\\\SB@titlesep

1011 \SB@pthead#1\SB@endparse’,
1012 \endgroup’

1013 }

\SBepthead While processing tokens at the head of a title, we skip over all spaces until we
\SBe@pthead reach a non-space token.

\SBe@@pthead;p14 \newcommand\SBepthead{\futurelet\SBenext\SB@epthead}
1015 \newcommand\SB@@pthead{’,
1016 \ifcat\noexpand\SBOnext\@sptokeny,
1017 \expandafter\SB@@Apthead’
1018 \else}

1019 \expandafter\SB@ptmain,
1020 \fi%
1021 }

1022 \newcommand\SB@@@pthead{’,
1023 \afterassignment\SB@pthead’
1024 \let\SB@next= }

\SBeptloop The iterator of the title parser loop just scans the next token.
1025 \newcommand\SB@ptloop{\futurelet\SB@next\SB@ptmain}

\SBeptmain Once we've reached a non-space token in the title, we consume the remainder of
the title as-is, except that space tokens should be trimmed from the end of each
title.

1026 \newcommand\SB@ptmain{/

1027 \ifcat\noexpand\SB@next\@sptoken,
1028 \let\SB@donext\SB@ptsp/

83

1029 \else\ifcat\noexpand\SB@next\bgroup/
1030 \let\SB@donext\SBGptbg

1031 \else\ifx\SB@next\SB@endparsel,

1032 \global\SB@titlelist\expandafter{\the\SBO@titlelist\\}/
1033 \let\SB@donext\@gobble,

1034 \else\ifx\SB@next\\/

1035 \SB@toks{}¥

1036 \def\SB@donext{\SB@ptstep\SB@pthead}’
1037 \else%

1038 \def\SB@donext{\SBOptstep\SBCptloop}%
1039 \fi\fi\fi\fij

1040 \SB@donext}

\SBeptstep Consume a non-space, non-left-brace token and add it to the current song title. If
any spaces preceded it, add those too.

1041 \newcommand\SB@ptstep [2]{/
1042 \global\SB@titlelist\expandafter\expandafter\expandafter{/,

1043 \expandafter\the\expandafter\SBOtitlelist\the\SBQtoks#2}J,
1044 \SB@toks{}/
1045 #1%}

\SBeptbg The next title token is a left-brace. It should be balanced, so consume the entire
group and add it (along with its surrounding braces) as-is to the current title.

1046 \newcommand\SB@ptbg[1] {\SB@ptstep\SBeptloop{{#1}}}

\SBeptsp The next title token is a space. We won’t know whether to include it in the title
until we see what follows it. Strings of spaces followed by the \\ title-delimiter
token, or that conclude a title argument, should be stripped. So rather than add
the space token to the title, we remember it in a token register for possible later
inclusion.

1047 \newcommand\SB@ptsp{

1048 \SBQ@appendsp\SB@toks?,

1049 \afterassignment\SB@ptloop
1050 \let\SB@next= }

\sBetitlesep While parsing song titles, we temporarily assign \\ a non-trivial top-level expansion
(\SB@titlesep) in order to distinguish it from other macros.

1051 \newcommand\SB@titlesep{SB@titlesep}

\SB@endparse The \SB@endparse token marks the end of a token sequence being parsed. If
parsing works as intended, the macro should never be expanded, so produce an
error if it is.

1052 \newcommand\SB@endparse{/,
1053 \SB@Error{Title parsing failed}{This error should not occur.}},
1054 }

84

\SB@parsesrefs Assign the \songrefs macro a processed version of a scripture reference in
which the following adjustments have been made: (1) Spaces not preceded by
a comma or semicolon are made non-breaking. For example, 2 John 1:1 and
Song of Solomon 1:1 become 2~John~1:1 and Song~of~Solomon~1:1, respec-
tively. (2) Spaces between a semicolon and a book name are lengthened to en-spaces.
(3) Single hyphens are lengthened to en-dashes (--). (4) Non-breaking, thin spaces
are appended to commas not followed by a space. For example John 3:16,17
becomes John~3:16,\nobreak\thinspacel7. (5) Everything within an explicit
group is left unchanged, allowing the user to suppress all of the above as desired.

To achieve this, we must change all commas, hyphens, and spaces in the
scripture reference into active characters. Unfortunately, the catcodes of everything
in the text were set back when the full keyval list was digested as an argument to
\beginsong, so we must unset and reset the catcodes. One obvious solution is to
use \scantokens from e-TEX to do this, but that doesn’t allow us to suppress the
re-catcoding process within groups, and we’d like to avoid intoducing features that
require e-TEX anyway for compatibility reasons. Therefore, we build the following
small scanner instead.

The scanner walks through the text token by token, replacing each important
token by its active equivalent. No character codes are modified during this process
and no tokens are inserted because some of these tokens might end up being
arguments to multi-byte unicode character macros rather than being expanded
directly. The inputenc package only cares about the character codes, not the
category codes, so modifying only the category codes should be safe.

1055 \newcommand\SB@parsesrefs[1]{%

1056 \begingroup/

1057 \SB@toks{\begingroup\SB@sractives}/,
1058 \SB@prloop#1\SB@endparse,

1059 \xdef\songrefs{\the\SB@toks\endgroupl}’
1060 \endgroup
1061 }

\SB@prloop The main loop of the scripture reference scanner identifies each space, hyphen, and
\SB@prstep comma for special treatment.

\SB@Cprstepipg2 \newcommand\SB@prloop{\futurelet\SB@next\SBO@prstep}
1063 \newcommand\SB@prstep{%
1064 \ifcat\noexpand\SB@next A},
1065 \expandafter\SB@prcpy’
1066 \else%
1067 \expandafter\SB@@prstep
1068 \fi%
1069 ¥
1070 \newcommand\SB@@prstep{’
1071 \ifcat\noexpand\SBOnext\@sptokeny,
1072 \let\SB@donext\SB@prspace,
1073 \else\ifx\SBGnext-%
1074 \let\SB@donext\SB@prhyphen,
1075 \else\ifx\SB@next,%

85

1076 \let\SB@donext\SB@prcommay,
1077 \else\ifx\SB@next\SB@endparsej,

1078 \let\SB@donext\@gobble,
1079 \else\ifcat\noexpand\SB@next\bgroup/
1080 \1let\SB@donext\SB@prgr

1081 \else)

1082 \let\SB@donext\SB@prcpy’
1083 \fi\fi\fi\fi\fi%

1084 \SB@donext

1085 }

\SBeprcpy Anything that isn’t one of the special tokens above, and anything in a group, is

\SB@prgr

\SB@prcomma
\SB@prhyphen

\SB@prspace
\SB@@prspace

\SB@sractives

\SB@srspacing

copied without modification.

1086 \newcommand\SB@prcpy [1] {\SB@toks\expandafter{\the\SBOtoks#1}\SB@prloop}
1087 \newcommand\SB@prgr [1]{\SB@toks\expandafter{\the\SB@toks{#1}}\SB@prloop}

Commas and hyphens are replaced with active equivalents.
1088 \newcommand\SB@prcomma [1]{}
1089 {\catcode‘,\active
1090 \gdef\SB@prcomma#1{\SB@toks\expandafter{\the\SB@toks,}\SBO@prloop}}
1091 \newcommand\SB@prhyphen[1]{}
1092 {\catcode‘-\active
1093 \gdef\SB@prhyphen#1{\SB@toks\expandafter{\the\SB@toks-}\SB@prloopl}}

Spaces are made active as well, but doing so requires some specialized code since
they cannot be consumed as implicit macro arguments.

1094 \newcommand\SB@prspace [1]{}

1095 {\obeyspaces

1096 \gdef\SB@prspace{\SB@toks\expandafter{\the\SB@toks }\SB@@prspacel}}

1097 \newcommand\SB@@prspace{\afterassignment\SBOprloop\let\SB@temp= }

Assign macro definitions to active commas, hyphens, spaces, and returns when the
token list generated by \SB@parsesrefs is used to typeset a scripture reference
list.

1098 \newcommand\SB@sractives{}

1099 {\catcode‘,\active\catcode‘-\active\obeyspaces’
1100 \gdef\SB@sractives{/

1101 \let,\SB@srcomma\let-\SB@srhyphen\let \SB@srspace,
1102 \SB@srspacing}/,

1103 }

The space factors of semicolons and commas are what the active spaces within a
scripture reference text use to decide what came before. The following sets them
to their default values in case they have been changed, but sets all other space
factors to 1000.

1104 \newcommand\SB@srspacing{/,

1105 \nonfrenchspacing\sfcode‘\;=1500\sfcode‘\,=1250\relax’

1106 }

86

\SB@srcomma
\SB@@srcomma

\SB@srhyphen
\SB@@srhyphen
\SB@srdash

Commas not already followed by whitespace are appended with a thin, non-breaking
space.

1107 \newcommand\SB@srcomma{, \futurelet\SB@next\SB@@srcomma}

1108 \newcommand\SB@@srcomma{’,

1109 \ifx\SB@next\SB@srspace\else

1110 \nobreak\thinspace,

1111 \fi%

1112 }

Hyphens that are not already part of a ligature (an en- or em-dash) become
en-dashes.

1113 \newcommand\SB@srhyphen{\futurelet\SB@next\SB@@srhyphen}

\SB@@srdashii14 \newcommand\SB@@srhyphen{’,

\SB@srspace
\SB@@srspace

1115 \ifx\SB@next\SB@srhyphen\expandafter\SB@srdash\else--\fi},
1116 }

1117 \newcommand\SB@srdash[1] {\futurelet\SB@next\SB@@srdash}

1118 \newcommand\SB@@srdash{%

1119 \ifx\SB@next\SB@srhyphen---\expandafter\@gobble\else--\fi%
1120 }

To compress consecutive whitespace, we ignore spaces immediately followed by
more whitespace. Spaces not preceded by a semicolon or comma become non-
breaking. Most spaces following a semicolon become en-spaces with favorable
breakpoints, but a special case arises for spaces between a semicolon and a digit
(see \SB@srcso below).

1121 \newcommand\SB@srspace{\futurelet\SBGnext\SB@Osrspace}

1122 \newcommand\SB@@srspace{},

1123 \let\SB@donext\relax,

1124 \ifx\SB@next\SB@srspace\else,

1125 \ifnum\spacefactor>\@m}

1126 \ifnum\spacefactor>1499 Y%
1127 \ifcat\noexpand\SBOnext0%
1128 \let\SB@donext\SB@srcso’,
1129 \elsel

1130 \penalty-5\enskip%

1131 \fil

1132 \elsel

1133 \space,

1134 \fi¥%

1135 \else’

1136 \nobreak\space},

1137 \£fiY%

1138 \fi%
1139 \SB@donext%
1140 }

\SB@srcso A space between a semicolon and a digit could be within a list of verse references
\SBe@@srcso for a common book (e.g., Job 1:1; 2:2); or it could separate the previous book

from a new book whose name starts with a number (e.g., Job 1:1; 1 John 1:1).

87

In the former case, we should just use a regular space; but in the latter case we
should be using an en-space with a favorable breakpoint. To distinguish between
the two, we peek ahead at the next two tokens. If the second one is a space, assume
the latter; otherwise assume the former.

1141 \newcommand\SB@srcso [1] {\futurelet\SB@temp\SB@A@srcso}

1142 \newcommand\SB@@srcso{%
1143 \ifx\SB@temp\SB@srspacel

1144 \penalty-5\enskip
1145 \else%
1146 \space’

1147 \fi%
1148 \SB@next
1149 }

15.6 Verses and Choruses

The following programming typesets song contents, including verses, choruses,
and textual notes.

\ifSB@stanza The following conditional remembers if we’ve seen any stanzas yet in the current
song.
1150 \newif\ifSB@stanza

\SB@stanzabreak End this song stanza and start a new one.
1151 \newcommand\SB@stanzabreak{’,
1152 \ifhmode\par\fi%
1153 \ifSB@stanzal,

1154 \SB@breakpoint{%

1155 \ifSB@inverse},

1156 \ifSB@prevverse\vvpenalty\else\cvpenalty\fi},
1157 \elseY

1158 \ifSB@prevverse\vcpenalty\else\ccpenalty\fi%
1159 \fi%

1160 Yh

1161 \vskip\versesep’

1162 \fi%

1163 }

\SB@breakpoint Insert a valid breakpoint into the vertical list comprising a song.

1164 \newcommand\SB@breakpoint [1]{%
1165 \begingroup%

1166 \ifnum#1<\@M%,

1167 \SB@skip\colbotglue\relaxy,
1168 \SB@skip-\SB@skip%

1169 \else%

1170 \SB@skip\z@skip/

1171 \fi%

1172 \advance\SB@skip\lastskip

88

\SB@putbox

\SB@obeylines

\SB@par

1173 \unskip’

1174 \nobreak?,

1175 \ifnum#1<\@M}

1176 \vskip\colbotglue\relax,
1177 \penalty#1%

1178 \£fiY

1179 \vskip\SB@skip/
1180 \endgroup’
1181 }

Unbox a vbox and follow it by vertical glue if its depth is unusually shallow. This
ensures that verses and choruses will look equally spaced even if one of them has a
final line with no descenders.

1182 \newcommand\SB@putbox [2] {%

1183 \begingroup%

1184 \SB@dimen\dp#2,

1185 #1#27,

1186 \setbox\SB@box\hbox{{\1lyricfont\relax p}}%
1187 \ifdim\SB@dimen<\dp\SB@box

1188 \advance\SB@dimen-\dp\SB@boxY,
1189 \vskip-\SB@dimen}

1190 \£fil

1191 \setbox\SB@box\box\voidb0x

1192 \endgroup/,

1193 }

Within verses and choruses we would like to use \obeylines so that each (return)
in the source file ends a paragraph without having to say \par explicitly. The
ETEX base code establishes the convention that short-term changes to \par will
restore \par by setting it equal to \@par. Long-term (i.e., environment-long)
changes to \par should therefore redefine \@par to restore the desired long-term
definition. The following code starts a long-term redefinition of \par adhering to
these conventions, and extends that definition to (return) as well.

1194 \newcommand\SB@obeylines{%

1195 \let\par\SB@par’,

1196 \obeylinesY

1197 \let\@par\SB@@par/

1198 }

The following replacement definition of \par constructs paragraphs in which page-
breaks are disallowed, since no wrapped line in a song should span a page- or
column-break. It then inserts an interlinepenalty after the paragraph so that such
penalties will appear between consecutive lines in each verse. (Note: The \endgraf
macro must not be uttered within a local group since this prevents parameters like
\hangindent from being reset at the conclusion of each paragraph.)

1199 \newcommand\SB@par{

1200 \ifhmode’,

1201 \SB@cnt\interlinepenalty

89

1202 \interlinepenalty\@M}

1203 \endgraf’,

1204 \interlinepenalty\SB@cnt

1205 \ifSB@inchorus},

1206 \ifdim\cbarwidth>\z@\nobreak\else\SB@ilpenalty\fi%
1207 \else’

1208 \SB@ilpenalty%

1209 \£fiY%

1210 \fi%

1211 }

\SB@ilpenalty By default, breaking a vertical list between paragraphs incurs a penalty of zero.
Thus, we only insert an explicit penalty between lines if \interlinepenalty is
non-zero. This avoids cluttering the vertical list with superfluous zero penalties.

1212 \newcommand\SB@ilpenalty{%
1213 \ifnum\interlinepenalty=\z@\else},

1214 \penalty\interlinepenalty’
1215 \fi%
1216 }

\SBe@par This replacement definition of \@par restores the \SB@par definition of \par and
then ends the paragraph.

1217 \newcommand\SB@@par{\let\par\SB@par\par}

\SBeparindent Reserve a length to remember the current \parindent.
1218 \SB@newdimen\SB@parindent

\SBeeverypar Reserve a control sequence to hold short-term changes to \everypar.
1219 \newcommand\SB@everypar{}

\SB@raggedright Perform \raggedright except don’t nuke the \parindent.

1220 \newcommand\SB@raggedright{J,
1221 \SB@parindent\parindent?,
1222 \raggedright%

1223 \parindent\SB@parindent?
1224 }

\vnumbered The following conditional remembers whether this verse is being numbered or not
(i.e., it distinguishes between \beginverse and \beginversex).

1225 \newif\ifvnumbered

\ifSB@prevverse Reserve a conditional to remember if the previous block in this song was a verse.

1226 \newif\ifSB@prevverse

90

verse
versex*

\beginverse

\SB@beginverse

Before replacing the little-used verse environment with a new one, issue a
warning if the current definition of \verse is not the I¥TEX-default one. This
may indicate a package clash.

1227 \CheckCommand\verse{%
1228 \let\\\@centercry,
1220 \list{}{%

1230 \itemsep\z@%
1231 \itemindent-1.5em}
1232 \listparindent\itemindenty
1233 \rightmargin\leftmarginj,
1234 \advance\leftmarginl.5em
1235 }h
1236 \item\relax,
1237 }
Begin a new verse. This can be done by beginning a verse environment or by using

the \beginverse macro. The latter must check for a trailing star to determine
whether this verse should be numbered. We use \@ifstar to scan ahead for the
star, but this needs to be done carefully because while scanning we might encounter
tokens that should be assigned different catcodes once the verse really begins.
Thus, we temporarily invoke \SB@loadactives for the duration of \@ifstar so
that everything gets the right catcode.

1238 \renewenvironment{verse}

1239 {\vnumberedtrue\SB@beginverse}

1240 {\SB@endverse}

1241 \newenvironment{verse*}

1242 {\vnumberedfalse\SB@beginverse}

1243 {\SB@endverse}

1244 \newcommand\beginverse{/,

1245 \begingroup’

1246 \SB@loadactives’%

1247 \@ifstar{\endgroup\vnumberedfalse\SB@beginversel/,
1248 {\endgroup\vnumberedtrue\SB@beginverse},
1249 }

Start the body of a verse. We begin by inserting a mark if \repchoruses is active
and this verse was preceded by a numbered verse (making this an eligible place to
insert a chorus later).

Verse numbering is implemented using \everypar so that if there is any vertical
material between the \beginverse and the first line of the verse, that material will
come before the verse number. Intervening horizontal material (e.g., \textnote)
can temporarily clear \everypar to defer the verse number until later.

1250 \newcommand\SB@beginverse{’,
1251 \ifSB@insong}

1252 \ifSB@inverse\SB@errbvv\endverse\fiY
1253 \ifSB@inchorus\SB@errbvc\endchorus\fi¥,
1254 \else%

1255 \SB@errbvt\beginsong{Unknown Song}/,

91

1256 \fi%
1257 \ifrepchorus\ifvoid\SB@chorusbox\else,

1258 \SB@gotchorustrue,

1259 \ifSB@prevverse\ifvnumberedy,

1260 \marks\SB@cmarkclass{\SB@cmark}/,
1261 \fi\fij

1262 \fi\fil

1263 \SB@inversetrue,

1264 \def\SB@closeall{\endverse\endsongl}/,
1265 \SB@stanzabreak

1266 \versemark\nobreak},

1267 \global\SB@stanzatrue,

1268 \SB@ifempty\SB@cr@\memorize{\replay[]}%
1269 \setbox\SB@box\vbox\bgroup\begingroup/

1270 \ifvnumberedy,

1271 \protected@edef\@currentlabel{\p@versenum\theversenum}y,
1272 \def\SB@everypar{’

1273 \setbox\SB@box\hbox{{\printversenum{\theversenum}}}J,
1274 \ifdim\wd\SB@box<\versenumwidth,

1275 \setbox\SB@box

1276 \hbox to\versenumwidth{\unhbox\SB@box\hfil}%

1277 \fi%

1278 \ifchorded\vrule\@height\baselineskip\@width\z@\@depth\z@\fi}
1279 \placeversenum\SB@boxY,

1280 \gdef\SB@everypar{}/

1281 Yh

1282 \elseY

1283 \def\SB@everypar{/,

1284 \ifchorded\vrule\@height\baselineskip\@width\z@\@depth\z@\fi}
1285 \gdef\SBQeverypar{}%

1286 Yh

1287 \£fil

1288 \everypar{\SB@everypar\everypar{}}/

1289 \versefont\relax\SB@setbaselineskip\versejustify’,

1290 \SB@loadactivesy,

1291 \SB@obeylines’,

1292 \penalty12345 %

1293 \everyverse\relaxy,

1294 }

\SB@endverse FEnd a verse. This involves unboxing the verse material with \SB@putbox, which
corrects for last lines that are unusually shallow.

1295 \newcommand\SB@endverse{’,
1206 \ifSB@insongh

1297 \ifSB@inverse},

1298 \unpenalty?

1299 \endgroup\egroup’

1300 \SB@putbox\unvbox\SB@box%
1301 \SB@inversefalse},

1302 \def\SB@closeall{\endsong}/

92

1303 \ifvnumbered\stepcounter{versenum}\£fi%

1304 \SB@prevversetrue’,

1305 \else\ifSB@inchorus\SB@errevc\endchorus,
1306 \else\SB@errevo\fi\fi},

1307 \else),

1308 \SB@errevt,

1309 \fi%

1310 }

\ifSB@chorustop When a chorus is broken in to several pieces by column-breaks (via \brk), the
following conditional remembers whether the current piece is the topmost one for
this chorus.

1311 \newif\ifSB@chorustop

\SBechorusbox When \repchoruses is used, the first sequence of consecutive choruses is remem-
bered in the following box register.

1312 \SB@newbox\SB@chorusbox

\ifSBegotchorus The following conditional remembers whether we’ve completed storing the first
block of consecutive choruses.

1313 \newif\ifSB@gotchorus

\SB@cmarkclass The \repeatchoruses feature requires the use of two extended mark classes
\SB@nocmarkclass provided by e-TEX. We use the \newmarks macro to allocate these classes, if it’s
available. If \newmarks doesn’t exist, then that means the user has an e-TEX
compatible version of IXTEX, but no etex style file to go with it; we just have to
pick two mark classes and hope that nobody else is using them.
1314 \ifSB@etex
1315 \@ifundefined{newmarks}{

1316 \@ifundefined{newmark}{

1317 \mathchardef\SB@cmarkclass83
1318 \mathchardef\SB@nocmarkclass84
1319 H

1320 \newmark\SB@cmarkclass

1321 \newmark\SB@nocmarkclass

1322 }

1323 M

1324 \newmarks\SB@cmarkclass

1325 \newmarks\SB@nocmarkclass

1326 %}

1327 \fi

\SB@cmark To determine where choruses should be inserted when \repchoruses is active,
\SB@lastcmark three kinds of marks are inserted into song boxes: \SB@cmark is used to mark places
\SB@nocmark where a chorus might be inserted between verses, and \SB@lastcmark marks a
place where a chorus might be inserted after the last verse of the song. Both marks

are e-TEX marks of class \SB@cmarkclass, to avoid disrupting the use of standard

TEX marks. Each time a chorus is automatically inserted, \SB@nocmark is inserted

93

with mark class \SB@nocmarkclass just above it (and at the top of each additional
page it spans). This inhibits future chorus inserts until the already-inserted chorus
has been fully committed to the output file. Otherwise some choruses could get
auto-inserted multiple times at the same spot, possibly even leading to an infinite
loop!

1328 \newcommand*\SB@cmark{SB@cmark}
1329 \newcommand*\SB@lastcmark{SB@lastcmark}
1330 \newcommand*\SB@nocmark{SB@nocmark}

chorus Start a new chorus. If \repchoruses is active and this is part of the first set of
\beginchorus consecutive choruses in the song, then include it and its preceding vertical material
in the \SB@chorusbox for possible later duplication elsewhere.

1331 \newenvironment{chorus}{\beginchorus}{\SB@endchorus}
1332 \newcommand\beginchorus{%

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357

1358 }

\1fSB@insong
\ifSB@inverse\SB@errbcv\endverse\fi},
\ifSB@inchorus\SB@errbcc\endchorus\fi},

\else
\SB@errbct\beginsong{Unknown Song}/,

\fi%

\SB@inchorustrue’,

\def\SB@closeall{\endchorus\endsong}y,

\SB@chorustoptrue

\vnumberedfalse}

\SB@stanzabreaky,

\chorusmarky,

\ifrepchorus,
\ifSB@gotchorus\else\ifSB@prevverse\elsey,

\global\setbox\SB@chorusbox\vbox{’
\unvbox\SB@chorusbox¥
\SB@stanzabreak’,

\chorusmarky
Yh
\fi\fi%

\fi%

\global\SB@stanzatrue’

\replay[]%

\SB@@beginchorus?,

\everychorus\relax,

\SB@@beginchorus Begin the body of a chorus, or continue the body of a chorus after \brk has paused
it to insert a valid breakpoint. We insert an empty class-\SB@cmarkclass mark
here so that this chorus will not be duplicated elsewhere on the same page(s) where
it initially appears.

1359 \newcommand\SB@@beginchorus{%

1360
1361
1362

\ifrepchorus\marks\SB@cmarkclass{}\fi%
\setbox\SB@box\vbox\bgroup\begingroup
\ifchordedy,

94

1363 \def\SB@everypar{}

1364 \vrule\@height\baselineskip\@width\z@\@depth\z@}
1365 \gdef\SBQeverypar{}%

1366 Yh

1367 \everypar{\SB@everypar\everypar{}}/

1368 \fil%

1369 \chorusfont\relax\SB@setbaselineskip\chorusjustify¥
1370 \SB@loadactives}

1371 \SB@obeylines’,

1372 \penalty12345 7

1373 }

\SB@endchorus End a chorus. This involves creating the vertical line to the left of the chorus and
then unboxing the chorus material that was previously accumulated.

1374 \newcommand\SB@endchorus{/
1375 \ifSB@insong},

1376 \ifSB@inchorus},

1377 \unpenalty%

1378 \endgroup\egroup’

1379 \SB@inchorusfalse,

1380 \def\SB@closeall{\endsongl}’

1381 \setbox\SB@box\vbox{%

1382 \SB@chorusbar\SB@boxJ

1383 \SB@putbox\unvbox\SB@box’%

1384 ¥

1385 \ifrepchorus\ifSB@gotchorus\else}
1386 \global\setbox\SB@chorusbox\vbox{/
1387 \unvbox\SB@chorusbox},

1388 \unvcopy\SB@box%

1389 1A

1390 \fi\fi%,

1391 \unvbox\SB@box%

1392 \SB@prevversefalse

1393 \else\ifSB@inverse\SB@errecv\endverse},
1394 \else\SB@erreco\fi\fi},

1395 \else%

1396 \SB@errect¥

1397 \fi}

1398 }

\SB@cbarshift Increase \leftskip to accommodate the chorus bar, if any.

1399 \newcommand\SB@cbarshift{
1400 \ifSB@inchorus\ifdim\cbarwidth>\z@J,

1401 \advance\leftskip\cbarwidth,
1402 \advance\leftskip5\p@\relax,
1403 \fi\fi%

1404 }

\SB@chorusbar Create the vertical bar that goes to the left of a chorus. Rather than boxing up the
chorus in order to put the bar to the left, the bar is introduced as leaders directly

95

\SB@computess

into the vertical list of the main song box. This allows it to stretch and shrink
when a column is typeset by the page-builder.

1405 \newcommand\SB@chorusbar [1]{}

1406 \ifdim\cbarwidth>\z@%

1407 \SB@dimen\ht#1},

1408 \SB@dimenii\dp#1%
1409 \advance\SB@dimen},
1410 \ifSB@chorustop\ifchorded\else2\fi\fi\SB@dimenii},
1411 \SB@skip\SB@dimen\relaxy,
1412 \SB@computess\SB@skip1\@plus#1Y}
1413 \SB@computess\SBOskip{-1}\@minus#1,
1414 \nointerlineskip\null\nobreak,
1415 \leaders\vrule\@width\cbarwidth\vskip\SB@skip%
1416 \ifSB@chorustop\ifchorded\elsey,
1417 \advance\SB@skip-\SB@dimenii%
1418 \fi\fij
1419 \nobreak\vskip-\SB@skip/
1420 \fi%
1421 }
This computes the stretchability or shrinkability of a vbox and stores the result

in the skip register given by (arg1). If (arg2) = 1 and (ar¢g3) is “plus”, then
the stretchability of box (arg/) is added to the plus component of (argl). If
(arg2) = —1 and (arg3) is “minus”, then the shrinkability of the box is added to
the minus component of (arg?). If the stretchability or shrinkability is infinite,
then we guess 1fil for that component.

1422 \newcommand\SB@computess [4]{/

1423 \begingroup%

1424 \vbadness\@M\vfuzz\maxdimeny,

1425 \SB@dimen4096\p@%

1426 \setbox\SB@box\vbox spread#2\SBedimen{\unvcopy#41}
1427 \ifnum\badness=\z@}

1428 \global\advance#1\z@#31fil\relax/,

1429 \else’

1430 \SB@dimenii\SB@dimen,

1431 \loop/

1432 \SB@dimenii.5\SB@dimenii}

1433 \ifnum\badness<100 %

1434 \advance\SB@dimen\SB@dimenii%

1435 \else

1436 \advance\SB@dimen-\SB@dimenii

1437 \fil%

1438 \setbox\SB@box\vbox spread#2\SBedimen{\unvcopy#4}%
1439 \ifnum\badness=100 \SB@dimenii\z@\fi},

1440 \ifdim\SB@dimenii>.1\p@\repeat

1441 \ifdim\SB@dimen<.1\p@\SB@dimen\z@\fi%

1442 \global\advance#1\z@#3\SB@dimen\relax

1443 \£fi%

1444 \endgroup’

96

1445 }

\brk Placing \brk within a line in a verse or chorus tells TEX to break the line at that
point (if it needs to be broken at all).

Placing \brk on a line by itself within a chorus stops the chorus (and its
vertical bar), inserts a valid breakpoint, and then restarts the chorus with no
intervening space so that if the breakpoint isn’t used, there will be no visible effect.
Placing it on a line by itself within a verse just inserts a breakpoint.

Placing \brk between songs forces a column- or page-break, but only if gen-
erating a non-partial list of songs. When generating a partial list, \brk between
songs is ignored.

1446 \newcommand\brk{%
1447 \ifSB@insong},

1448 \ifhmode\penalty-5 \else,

1449 \unpenalty

1450 \ifSB@inchorus

1451 \ifdim\cbarwidth=\z@%

1452 \ifrepchorus\marks\SB@cmarkclass{}\fi%
1453 \SB@breakpoint\brkpenalty/

1454 \else/

1455 \endgroup\egroup’

1456 \ifrepchorus\ifSB@gotchorus\else,
1457 \global\setbox\SB@chorusbox\vbox{}
1458 \unvbox\SB@chorusbox¥

1459 \SB@chorusbar\SB@box

1460 \unvcopy\SB@boxY%

1461 \SB@breakpoint\brkpenalty?,

1462 Yh

1463 \fi\fi}

1464 \SB@chorusbar\SB@box¥

1465 \unvbox\SB@box%

1466 \SB@breakpoint\brkpenalty?

1467 \SB@chorustopfalse,

1468 \SB@@beginchorus?,

1469 \fi%

1470 \else%

1471 \SB@breakpoint\brkpenalty

1472 \fiY%

1473 \£fil

1474 \else}

1475 \ifpartiallist\else\SB@nextcol\@ne\colbotglue\fi},
1476 \fi%

1477 }

\SB@boxup Typeset a shaded box containing a textual note to singers or musicians. We first
try typesetting the note on a single line. If it’s too big, then we try again in
paragraph mode with full justification.

1478 \newcommand\SB@boxup[1]{%
1479 \setbox\SB@box\hbox{{\notefont\relax#1}}Y

97

\textnote

1480 \SB@dimen\wd\SB@box7

1481 \advance\SB@dimen6\p@/

1482 \advance\SB@dimen\leftskip/
1483 \advance\SB@dimen\rightskip
1484 \ifdim\SB@dimen>\hsize},

1485 \vbox{{%

1486 \advance\hsize-6\p@Y

1487 \advance\hsize-\leftskip%
1488 \advance\hsize-\rightskip/
1489 \notejustify¥

1490 \unhbox\SB@box\parj

1491 \kern\z@%

1492 4

1493 \elsel

1494 \vbox{\box\SB@box\kern\z@}/
1495 \fi%

1496 }

Create a textual note for singers and musicians. If the note begins a verse or
chorus, it should not be preceded by any spacing. Verses and choruses begin with
the sentinel penalty 12345, so we check \lastpenalty to identify this case. When
typesetting the note, we must be sure to temporarily clear \everypar to inhibit
any verse numbering that might be pending. We also readjust the \baselineskip
as if we weren’t doing chords, since no chords go above a textual note.

1497 \newcommand\textnote [1]{}

1498 \ifhmode\par\fi%

1499 \ifnum\lastpenalty=12345\else/,

1500 \ifSB@inverse,

1501 \vskip2\p@\relax

1502 \else\ifSB@inchorus

1503 \vskip2\p@\relax,

1504 \else\ifSB@stanza,

1505 \nobreak\vskip\versesep/,
1506 \fi\fi\fiY

1507 \fi%
1508 \begingroup

1509 \everypar{}%
1510 \ifchorded\chordedfalse\SB@setbaselineskip\chordedtrue\fi}
1511 \placenote{\SB@colorbox\notebgcolor{\SB@boxup{#1}}1}%

1512 \endgroup’

1513 \nobreak},

1514 \ifSB@inverseY

1515 \vskip2\p@\relax

1516 \else\ifSB@inchorus},
1517 \vskip2\p@\relax’,
1518 \else\ifSB@stanza\else,

1519 \nobreak\vskip\versesep/
1520 \fi\fi\fiy
1521 }

98

\musicnote

\echo
\SB@echo
\SB@@echo

Create a textual note for musicians.
1522 \newcommand\musicnote[1]{\ifchorded\textnote{#1}\fi}

Typeset an echo part in the lyrics. Echo parts are in a user-customizable font and
parenthesized.

The \echo macro must be able to accept chords in its argument. This compli-
cates the implementation because chord macros should change catcodes, but if we
grab \echo’s argument in the usual way then all the catcodes will be set before
the chord macros have a chance to change them. This would disallow chord name
abbreviations like # and & within \echo parts.

If we're using e-TEX then the solution is easy: we use \scantokens to re-scan
the argument and thereby re-assign the catcodes. (One subtlety: Whenever BTEX
consumes an argument to a macro, it changes # to ## so that when the argument
text is substituted into the body of the macro, the replacement text will not contain
unsubstituted parameters (such as #1). If \scantokens is used on the replacement
text and the scanned tokens assign a new catcode to #, that causes #’s to be
doubled in the output, which was not the intent. To avoid this problem, we use
\@sanitize before consuming the argument to \echo, which sets the catcodes of
most special tokens (including #) to 12, so that IXTEX will not recognize any of
them as parameters and will therefore not double any of them.)

1523 \ifSB@etex
1524 \newcommand\echo{\begingroup\@sanitize\SB@echo}
1525 \newcommand\SB@echo [1]{%

1526 \endgroup’,

1527 \begingroup’,

1528 \echofont\relax,
1529 \endlinechar\m@ne?,
1530 \scantokens{ (#1)}/
1531 \endgroup’,

1532}

1533 \else

If we're not using e-TEX, we must do something more complicated. We set up the
appropriate font within a local group and finish with \hbox so that the argument to
\echo is treated as the body of the box. Control is reacquired after the box using
\aftergroup, whereupon we unbox the box and insert the closing parenthesis.
This almost works except that if the last thing in an echo part is a long chord
name atop a short lyric, the closing parenthesis will float out away from the lyric
instead of being sucked under the chord. I can find no solution to this problem, so
to avoid it users must find a version of IXTEX that is e-TEX compatible.

1534 \newcommand\echo{

1535 \begingroup’

1536 \echofont\relaxy,

1537 \afterassignment\SBQecho}
1538 \setbox\SB@box\hbox¥
1539}

1540 \newcommand\SB@echo{\aftergroup\SB@@echo (}
1541 \newcommand\SB@@echo{\unhbox\SB@box) \endgroup}

99

1542 \fi

\rep Place \rep{(n)} at the end of a line to indicate that it should be sung (n) times.

1543 \newcommand\rep [1]{%
1544 (\raise.25ex\hbox{%

1545 \fontencoding{0OMS}\fontfamily{cmsy}\selectfont\char\tw@y
1546 MDY
1547 }

15.7 Scripture Quotations

The macros in this section typeset scripture quotations and other between-songs
environments.

songgroup A songgroup environment associates all enclosed environments with the enclosed
song. When generating a partial list, all the enclosed environments are contributed
if and only if the enclosed song is contributed.

1548 \newenvironment{songgroup}{%

1549 \ifnum\SB@grouplvl=\z@},

1550 \edef\SB@sgroup{\thesongnum}y,

1551 \global\SB@groupcnt\m@ne,

1552 \fi%

1553 \advance\SB@grouplvl\@ne,

1554

1555 \advance\SBQgrouplvl\m@ne,

1556 \ifnum\SB@grouplvl=\z@\let\SBO@sgroup\@empty\fi/,
1557 }

\SBegrouplvl Count the songgroup environment nesting depth.
1558 \SB@newcount\SB@grouplvl

intersong An intersong block contributes vertical material to a column between the songs of
a songs section. It is subject to the same column-breaking algorithm as real songs,
but receives none of the other formatting applied to songs.

1559 \newenvironment{intersong}{%

1560 \ifSB@insong\SB@errbro\SB@closeall\fi},

1561 \ifSB@intersong\SB@errbrr\SBQ@closeall\fij},
1562 \setbox\SB@chorusbox\box\voidb@x

1563 \SB@intersongtrue},

1564 \def\SB@closeall{\end{intersong}l}’

1565 \setbox\SB@songbox\vbox\bgroup\begingroup/

1566 \ifnum\SB@numcols>\z@\hsize\SB@colwidth\fi%
1567 \ifdim\sbarheight>\z@%

1568 \hrule\@height\sbarheight\@width\hsize},
1569 \nobreaky,

1570 \fi%

1571 X%

1572 \ifSBQ@intersong

1573 \ifdim\sbarheight>\z@}

100

1574 \ifhmode\par\£fi/

1575 \SB@skip\lastskip’

1576 \unskip\nobreak\vskip\SB@skip
1577 \hbox{\vrule\@height\sbarheight\@width\hsizel}},
1578 \fi%

1579 \endgroup\egroup’,

1580 \ifSBQ@omitscripl

1581 \setbox\SB@songbox\box\voidb@x
1582 \else’

1583 \SB@submitsong

1584 \£fiY%

1585 \SB@intersongfalse,

1586 \else%

1587 \1fSB@insong\SB@errero\SB@closeall\else\SB@errert\fiy
1588 \fi%

1589 }

The starred form contributes page-spanning vertical material directly to the top of
the nearest fresh page.

1590 \newenvironment{intersong*}{/

1591 \ifSB@insong\SB@errbro\SB@closeall\fi}

1592 \ifSB@intersong\SBQ@errbrr\SB@closeall\fi}
1593 \setbox\SB@chorusbox\box\voidb@x

1594 \SB@intersongtruey,

1595 \def\SB@closeall{\end{intersongx1}}/,

1596 \setbox\SB@songbox\vbox\bgroup\begingroup’

1597 H%

1598 \ifSB@intersong

1599 \endgroup\egroup’

1600 \ifSB@omitscrip

1601 \setbox\SB@songbox\box\voidb@xY
1602 \else’

1603 \def\SB@stype{\SB@styppagel}’
1604 \SB@submitsong

1605 \def\SBestype{\SB@stypcoll}’

1606 \£fil

1607 \SB@intersongfalse,

1608 \else

1609 \ifSB@insong\SB@errero\SB@closeall\else\SB@errert\fi},
1610 \fi%

1611 }

scripture Begin a scripture quotation. We first store the reference in a box for later use, and
\beginscripture then set up a suitable environment for the quotation. Quotations cannot typically
be reworded if line-breaking fails, so we set \emergencystretch to a relatively
high value at the outset.
1612 \newenvironment{scripture}{\beginscripture}{\SB@endscripture}
1613 \newcommand\beginscripture[1]{}
1614 \begin{intersong}’
1615 \SB@parsesrefs{#1}/,

101

1616 \setbox\SB@envbox\hbox{{\printscrcite\songrefs}}
1617 \def\SB@closeall{\endscripturel}y,

1618 \nobreak\vskip5\p@/

1619 \SB@parindent\parindent\parindent\z@}

1620 \parskip\z@skip\parfillskip\@flushglue

1621 \leftskip\SB@parindent\rightskip\SB@parindent\relaxy,
1622 \scripturefont\relaxy

1623 \baselineskip\f@size\p@\@plus\p@\relax

1624 \advance\baselineskip\p@\relaxy

1625 \emergencystretch.3em/,

1626 }

\SB@endscripture End a scripture quotation.

1627 \newcommand\SB@endscripture{’,
1628 \ifSBQ@intersong

1629 \scitehere}

1630 \ifhmode\par\£fi%
1631 \vskip-3\p@’

1632 \end{intersong}’,
1633 \fi%

1634 }

\scitehere Usually the scripture citation should just come at the \endscripture line, but at
times the user might want to invoke this macro explicitly at a more suitable point.
A good example is when something near the end of the scripture quotation drops
TEX into vertical mode. In such cases, it is often better to issue the citation before
leaving horizontal mode.

In any case, this macro should work decently whether in horizontal or vertical
mode. In horizontal mode life is easy: we just append the reference to the current
horizontal list using the classic code from p. 106 of The TEXbook. However, if
we’re now in vertical mode, the problem is a little harder. We do the best we
can by using \lastbox to remove the last line, then adding the reference and
re-typesetting it. This isn’t as good as the horizontal mode solution because TEX
only gets to reevaluate the last line instead of the whole paragraph, but usually
the results are passable.

1635 \newcommand\scitehere{/,
1636 \ifSB@intersong

1637 \ifvoid\SB@envbox\else,

1638 \ifvmodeY,

1639 \setbox\SB@box\lastbox’

1640 \nointerlineskip\noindent\hskip-\leftskip%

1641 \unhbox\SB@box\unskip

1642 \fi%

1643 \unskip\nobreak\hfil\penalty50\hskip.8em\null\nobreak\hfily
1644 \box\SB@envbox\kern-\SB@parindent,

1645 {\parfillskip\z@\finalhyphendemerits2000\parl}y

1646 \fi%

1647 \else),

102

1648 \SBQerrscrip\scitehere,
1649 \fij%
1650 }

\Acolon Typeset a line of poetry in a scripture quotation.

\Bcolonigsi \newcommand\Acolon{\SB@colon2\Acolon}
1652 \newcommand\Bcolon{\SB@coloni\Bcolon}

\SB@colon Begin a group of temporary definitions that will end at the next (return). The
(return) will end the paragraph and close the local scope.

1653 \newcommand\SB@colon[2]{%
1654 \ifSB@intersong\else’

1655 \SB@errscrip#2/,

1656 \beginscripture{Unknown}/,
1657 \fi%

1658 \ifhmode\par\fi%

1659 \begingroup’,

1660 \rightskip\SB@parindent\@plus4demy,
1661 \advance\leftskip2\SB@parindent?,
1662 \advance\parindent-#1\SB@parindent},
1663 \def\par{\endgraf\endgroup}’

1664 \obeylinesy,

1665 }

\strophe Insert blank space indicative of a strophe division in a scripture quotation.

1666 \newcommand\strophe{’,

1667 \ifSB@intersong\else,

1668 \SB@errscrip\strophe\beginscripture{Unknown}/
1669 \fi%

1670 \vskip.9ex\@plus.45ex\@minus.68ex\relax’,

1671 }

\scripindent Create an indented sub-block within a scripture quotation.
\scripoutdentig72 \newcommand\SB@scripdent [2]{%
\SB@scripdenti673 \ifSB@intersong\else
1674 \SB@errscrip#2\beginscripture{Unknownl}
1675 \fi%
1676 \ifhmode\par\fi%
1677 \advance\leftskip#1\SB@parindent\relax,
1678 }
1679 \newcommand\scripindent{\SB@scripdenti\scripindent}
1680 \newcommand\scripoutdent{\SB@scripdent-\scripoutdent}

\shiftdblquotes The Zaph Chancery font used by default to typeset scripture quotations seems to
\SB@ldgleft have some kerning problems with double-quote ligatures. The \shiftdblquotes
\SB@ldqright macro allows one to modify the spacing around all double-quotes until the current
\SBerdqleft group ends.
\SBOrdqrighti6s1 \newcommand\SBequotesactive{’
\SB@scanlqies2 \catcode‘’\active,
\SB@scanrq
\SB@dolq

\SB@dorq 103

1683 \catcode‘ ‘\active},

1684 }

1685 \newcommand\shiftdblquotes[4]{}
1686 \newcommand\SB@ldqleft{}

1687 \newcommand\SB@ldqright{}

1688 \newcommand\SB@rdqleft{}

1689 \newcommand\SB@rdqright{}

1690 \newcommand\SB@scanlq{}

1691 \newcommand\SB@scanrq{}

1692 \newcommand\SB@dolq{}

1693 \newcommand\SB@dorq{}

1694 {

1695 \SBQquotesactive

1696 \gdef\shiftdblquotes#1#2#3#4{Y
1697 \def\SB@ldqleft{\kern#1}%
1698 \def\SB@ldqright{\kern#2}},
1699 \def\SB@rdqleft{\kern#3}%
1700 \def\SBerdqright{\kern#41}/,

1701 \SB@quotesactive,

1702 \def ‘{\futurelet\SB@next\SB@scanlq}’
1703 \def’{\futurelet\SB@next\SB@scanrql
1704}

1705 \gdef\SB@scanlq{’

1706 \ifx\SB@next ‘%

1707 \expandafter\SB@dolq%

1708 \else},

1709 \expandafter\1lq/

1710 \£fi%

1711}

1712 \gdef\SB@scanrq{’

1713 \ifx\SB@next’%

1714 \expandafter\SB@dorq

1715 \elseY

1716 \expandafter\rq}

1717 \fiY

1718}

1719 \gdef\SB@dolq‘{Y%

1720 \ifvmode\leavevmode\else\/\fi%
1721 \vadjust{}’%

1722 \SB@ldgleft\1q\1lq\SB@ldqright
1723 \vadjust{}%

1724}

1725 \gdef\SB@dorq’{%

1726 \ifvmode\leavevmode\else\/\fi%
1727 \vadjust{}’%

1728 \SB@rdqleft\rq\rq\SB@rdqright
1729 \vadjust{}%

1730 }

1731 }

104

15.8 Transposition

The macros that transpose chords are contained in this section.

\SB@transposefactor This counter identifies the requested number of halfsteps by which chords are to
be transposed (from —11 to +11).

1732 \SB@newcount\SB@transposefactor

\ifSB@convertnotes KEven when transposition is not requested, the transposition logic can be used to
automatically convert note names to another form. The following conditional turns
that feature on or off.

1733 \newif\ifSB@convertnotes

\notenameA Reserve a control sequence for each note of the diatonic scale. These will be used
\notenameB to identify which token sequences the input file uses to denote the seven scale
\notenameC degrees. Their eventual definitions must consist entirely of uppercase letters, and
\notenameD they must be assigned using \def, but that comes later.

\notenameE|734 \newcommand\notenameA{}
\notenameF1735 \newcommand\notenameB{}
\notenameG1736 \newcommand\notenameC{}
1737 \newcommand\notenameD{}
1738 \newcommand\notenameE{}
1739 \newcommand\notenameF{}
1740 \newcommand\notenameG{}

\printnoteA These control sequences are what the transposition logic actually outputs to denote
\printnoteB each scale degree. They can include any IXTEX code that is legal in horizontal
\printnoteC mode.

\printnoteDi741 \newcommand\printnoteA{}
\printnoteE1742 \newcommand\printnoteB{}
\printnoteF1743 \newcommand\printnoteC{}
\printnoteG1744 \newcommand\printnoteD{}
1745 \newcommand\printnoteE{}
1746 \newcommand\printnoteF{}
1747 \newcommand\printnoteG{}

\notenamesin Set the note names used by the input file.

1748 \newcommand\notenamesin [7]{%
1749 \def\notenameA{#1}),

1750 \def\notenameB{#2}}

1751 \def\notenameC{#3}J,

1752 \def\notenameD{#4}J,

1753 \def\notenameE{#5}}

1754 \def\notenameF{#6}/,

1755 \def\notenameG{#71}/,

1756 \SB@convertnotestrue’,

1757 }

105

\notenamesout Set the note names that are output by the transposition logic.

1758 \newcommand\notenamesout [7]{%

1759
1760
1761
1762
1763
1764
1765
1766
1767 ¥

\def\printnoteA{#1}},
\def\printnoteB{#2}
\def\printnoteC{#3}Y
\def\printnoteD{#4}},
\def\printnoteE{#5}
\def\printnoteF{#6}},
\def\printnoteG{#7}/
\SB@convertnotestrue,

\notenames Set an identical input name and output name for each scale degree.

1768 \newcommand\notenames [7]{%

1769
1770
1771
1772 }

\notenamesin{#1{#2}{#3H{#4H{#5}{#63{#71}/
\notenamesout {#1{#2{#3F{#4}{#5H{#6}{#7}%
\SB@convertnotesfalse},

\alphascale Predefine scales for alphabetic names and solfedge names, and set alphabetic scales
\solfedge to be the default.
1773 \newcommand\alphascale{\notenames ABCDEFG}

1774 \newcommand\solfedge{\notenames{LA}{SI}{DO}{RE}{MI}{FA}{SOL}}
1775 \alphascale

\ifSB@prefshrps When a transposed chord falls on a black key, the code must choose which en-
harmonically equivalent name to give the new chord. (For example, should C
transposed by +1 be named C+# or Db?) A heuristic is used to guess which name
is most appropriate. The following conditional records whether the current key
signature is sharped or flatted according to this heuristic guess.

1776 \newif\ifSB@prefshrps

\ifSBeneedkey The first chord seen is usually the best indicator of the key of the song. (Even
when the first chord isn’t the tonic, it will often be the dominant or subdominant,
which usually has the same kind of accidental in its key signatures as the actual
key.) This conditional remembers whether the current chord is the first one seen
in the song, and should therefore be used to guess the key of the song.

1777 \newif \ifSB@needkey

\transpose The \transpose macro sets the transposition adjustment factor and informs the
transposition logic that the next chord seen will be the first one in the new key.

1778 \newcommand\transpose [1]{%

1779
1780
1781
1782
1783
1784
1785 }

\advance\SB@transposefactor by#1\relax
\SB@cnt\SB@transposefactor?,
\divide\SB@cnt12 %

\multiply\SB@cnt12 7%
\advance\SB@transposefactor-\SB@cntY
\SB@needkeytrue

106

\capo Specifying a \capo normally just causes a textual note to musicians to be typeset,
but if the transposecapos option is active, it activates transposition of the chords.
1786 \newcommand\capo [1]{%
1787 \iftranscapos\transpose{#1}\else\musicnote{capo #1}\fi%
1788 }

\prefersharps One of these macros is called after the first chord has been seen to register that
\preferflats we're transposing to a key with a sharped or flatted key signature.

1789 \newcommand\prefersharps{\SB@prefshrpstrue\SBeneedkeyfalse}
1790 \newcommand\preferflats{\SB@prefshrpsfalse\SB@needkeyfalse}

\transposehere If automatic transposition has been requested, yield the given chord transposed by
the requested amount. Otherwise return the given chord verbatim.

1791 \newcommand\transposehere [1]{}
1792 \ifnum\SB@transposefactor=\z@%

1793 \ifSB@convertnotes,

1794 \SB@dotranspose{#11}%

1795 \the\SB@toksY

1796 \else},

1797 #1%

1798 \fi%

1799 \elsek

1800 \ifSB@convertnotesy,

1801 {\SB@transposefactor\z@j

1802 \SB@dotranspose{#11}/,

1803 \xdef\SB@tempv{\the\SB@toks}}%
1804 \else%

1805 \def\SBetempv{#1}%

1806 \£fiY%

1807 \SB@dotranspose{#11}/,

1808 \expandafter\trchordformat\expandafter{\SB@tempv}{\the\SBQtoks}/,
1809 \fi%

1810 }

\notrans Suppress chord transposition without suppressing note name conversion. When
a \notrans{(fext)} macro appears within text undergoing transposition, the
\notrans macro and the group will be preserved verbatim by the transposition
parser. When it is then expanded after parsing, we must therefore re-invoke the
transposition logic on the argument, but in an environment where the transposition
factor has been temporarily set to zero. This causes note name conversion to occur
without actually transposing.

1811 \newcommand\notrans[1]{%
1812 \begingroup/

1813 \SB@transposefactor\z@}
1814 \transposehere{#1}J,
1815 \endgroup’

1816 }

107

\SBedotranspose Parse the argument to a chord macro, yielding the transposed equivalent in the
\SB@toks token register.
1817 \newcommand\SB@dotranspose[1]{/
1818 \SB@toks{}%
1819 \let\SB@dothis\SB@trmainj,
1820 \SB@trscan#1\SB@trend,
1821 }

\trchordformat By default, transposing means replacing old chords with new chords in the new key.
However, sometimes the user may want to typeset something more sophisticated,
like old chords followed by new chords in parentheses so that musicians who use
capos and those who don’t can play from the same piece of music. Such typesetting
is possible by redefining the following macro to something like #1 (#2) instead of
#2.

1822 \newcommand\trchordformat [2] {#2}

\SBetrscan This is the entrypoint to the code that scans over the list of tokens comprising a
chord and transposes note names as it goes. Start by peeking ahead at the next
symbol without consuming it.

1823 \newcommand\SB@trscan{\futurelet\SB@next\SB@dothis}

\SBetrmain Test to see whether the token was a begin-brace, end-brace, or space. These tokens
require special treatment because they cannot be accepted as implicit arguments
to macros.

1824 \newcommand\SB@trmain{%
1825 \ifx\SB@next\bgroup

1826 \let\SB@donext\SBQtrgroup

1827 \else\ifx\SB@next\egroup/

1828 \SB@toks\expandafter{\the\SB@toks\egroup}’
1829 \let\SB@donext\SBOtrskip%

1830 \else\ifcat\noexpand\SB@next\@sptoken,

1831 \SB@appendsp\SBAtoks

1832 \let\SB@donext\SBOtrskip%

1833 \else%

1834 \let\SB@donext\SBQtrstep%

1835 \fi\fi\fi%
1836 \SB@donext}
1837 }

\SBetrgroup A begin-group brace lies next in the input stream. Consume the entire group as an
argument to this macro, and append it, including the begin- and end-group tokens,
to the list of tokens processed so far. No transposition takes place within a group;
they are copied verbatim because they probably contain macro code.

1838 \newcommand\SB@trgroup [1]{%

1839 \SB@toks\expandafter{\the\SB@toks{#1}}}
1840 \SB@trscan,

1841 }

108

\SBetrskip A space or end-brace lies next in the input stream. It has already been added to
the token list, so skip over it.
1842 \newcommand\SB@trskip{’
1843 \afterassignment\SB@trscan
1844 \let\SB@next= }

\SBetrstep A non-grouping token lies next in the input stream. Consume it as an argument
to this macro, and then test it to see whether it’s a note letter or some other
recognized item. If so, process it; otherwise just append it to the token list and
continue scanning.

1845 \newcommand\SB@trstep [1]{%
1846 \let\SB@donext\SB@trscany,
1847 \ifcat\noexpand\SB@next AJ

1848 \ifnum\uccode ‘#1="#1%,

1849 \def\SB@temp{#11}J

1850 \let\SB@dothis\SB@trnote

1851 \else%

1852 \SB@toks\expandafter{\the\SBOtoks#1}J,
1853 \fi%

1854 \else\ifx\SB@next\SB@trend

1855 \let\SB@donext\relax,

1856 \else%

1857 \SB@toks\expandafter{\the\SB@toks#1}Y,
1858 \fi\fi%

1859 \SB@donext?%

1860 }

\SBetrnote We're in the midst of processing a sequence of uppercase letters that might comprise
a note name. Check to see whether the next token is an accidental (sharp or flat),
or yet another letter.

1861 \newcommand\SB@trnote{’,
1862 \ifcat\noexpand\SB@next A},

1863 \let\SB@donext\SBO@trnotestepl
1864 \else\ifnum\SB@transposefactor=\z@%
1865 \SB@cnt\z@%

1866 \let\SB@donext\SB@trtrans},
1867 \else\ifx\SB@next\flt’

1868 \SB@cnt\m@ne?,

1869 \let\SB@donext\SB@tracc}

1870 \else\ifx\SB@next\shrp%

1871 \SB@cnt\@neY

1872 \let\SB@donext\SB@tracc}

1873 \else%

1874 \SB@cnt\z@Y%

1875 \let\SB@donext\SB@trtrans},

1876 \fi\fi\fi\fi%
1877 \SB@donext’
1878 }

109

\SB@trnotestep The next token is a letter. Consume it and test to see whether it is an uppercase
letter. If so, add it to the note name being assembled; otherwise reinsert it into
the input stream and jump directly to the transposition logic.

1879 \newcommand\SB@trnotestep[1]{%
1880 \ifnum\uccode ‘#1="‘#17,
1881 \SB@app\def\SBOtemp{#1}/

1882 \expandafter\SB@trscan,

1883 \else}

1884 \SB@cnt\z@%

1885 \expandafter\SB@trtrans\expandafter#1y,
1886 \fi%

1887 }

\sBetracc We’'ve encountered an accidental (sharp or flat) immediately following a note
name. Peek ahead at the next token without consuming it, and then jump to the
transposition logic. This is done because the transposition logic might need to
infer the key signature of the song, and if the next token is an m (for minor), then
that information can help.

1888 \newcommand\SB@tracc[1]{\futurelet\SB@next\SBO@trtrans}

\SBetrtrans We've assembled a sequence of capital letters (in \SB@temp) that might comprise a
note name to be transposed. If the letters were followed by a \shrp then \SB@cnt
is 1; if they were followed by a \f1t then it is —1; otherwise it is 0. If the assembled
letters turn out to not match any valid note name, then do nothing and return to
scanning. Otherwise compute a new transposed name.

1889 \newcommand\SB@trtrans{%
1890 \advance\SB@cntY%

1891 \ifx\SB@temp\notenameA\z@}

1892 \else\ifx\SB@temp\notenameB\twa}
1893 \else\ifx\SB@temp\notenameC\throa@y,
1894 \else\ifx\SB@temp\notenameD5 %
1895 \else\ifx\SB@temp\notenameE7 %,
1896 \else\ifx\SB@temp\notenameF8 ¥
1897 \else\ifx\SB@temp\notenameG10 %

1898 \else-99 \fi\fi\fi\fi\fi\fi\fi%
1899 \ifnum\SB@cnt<\m@ne?

1900 \SB@toks\expandafter\expandafter\expandafter{’

1901 \expandafter\the\expandafter\SBO@toks\SBCtempl}’

1902 \else

1903 \advance\SB@cnt\SB@transposefactor

1904 \ifnum\SB@cnt<\z@\advance\SB@cnt12 \fi}

1905 \ifnum\SB@cnt>11 \advance\SB@cnt-12 \fi}

1906 \ifSB@needkey\ifnum\SB@transposefactor=\z0@\else\SB@setkeysig\fi\fi}
1907 \edef\SBOtemp{Y

1908 \the\SB@toksY

1909 \1fSB@prefshrps’

1910 \ifcase\SB@cnt\printnoteA\or\printnoteA\noexpand\shrp\ory,
1911 \printnoteB\or\printnoteC\or\printnoteC\noexpand\shrp\or

110

1912 \printnoteD\or\printnoteD\noexpand\shrp\or\printnoteE\ory

1913 \printnoteF\or\printnoteF\noexpand\shrp\or\printnoteG\or
1914 \printnoteG\noexpand\shrp\fi/,

1915 \else%

1916 \ifcase\SB@cnt\printnoteA\or\printnoteB\noexpand\flt\ory
1917 \printnoteB\or\printnoteC\or\printnoteD\noexpand\flt\ory
1918 \printnoteD\or\printnoteE\noexpand\flt\or\printnoteE\ory
1919 \printnoteF\or\printnoteG\noexpand\flt\or\printnoteG\ory
1920 \printnoteA\noexpand\f1lt\fi%

1921 \fi}¥

1922 \SB@toks\expandafter{\SBOtemp}’

1923 \fi%

1924 \let\SB@dothis\SB@trmainJ,
1925 \SB@trscan},

1926 }

\SB@setkeysig If this is the first chord of the song, assume that this is the tonic of the key,
and select whether to use a sharped or flatted key signature for the rest of the
song based on that. Even if this isn’t the tonic, it’s probably the dominant or
sub-dominant, which almost always has a number of sharps or flats similar to the
tonic. If the bottom note of the chord turns out to be a black key, we choose the
enharmonic equivalent that is closest to C on the circle of fifths (i.e., the one that
has fewest sharps or flats).

1927 \newcommand\SB@setkeysig{%
1928 \global\SB@needkeyfalse}
1929 \ifcase\SB@cnt,

1930 \global\SB@prefshrpstrue\ory, A
1931 \global\SB@prefshrpsfalse\ory Bb
1932 \global\SB@prefshrpstrue\ory B
1933 \ifx\SB@next mj, C

1934 \global\SB@prefshrpsfalse},

1935 \elsel

1936 \global\SB@prefshrpstrue

1937 \filor%

1938 \global\SB@prefshrpstrue\ory, C#
1939 \ifx\SB@next mj, D

1940 \global\SB@prefshrpsfalse},

1941 \else%

1942 \global\SB@prefshrpstrue

1943 \fi\or%

1944 \global\SB@prefshrpsfalse\or’, Eb
1945 \global\SB@prefshrpstrue\ory E

1946 \global\SB@prefshrpsfalse\ory, F
1947 \global\SB@prefshrpstrue\ory, F#

1948 \ifx\SB@next mJ, G

1949 \global\SB@prefshrpsfalse},
1950 \elsel

1951 \global\SB@prefshrpstrue
1952 \fil\or

111

1953 \global\SB@prefshrpsfalse\else} Ab

1954 \global\SB@needkeytrue’, non-chord
1955 \fij
1956 }

\SBetrend The following macro marks the end of chord text to be processed. It should always
be consumed and discarded by the chord-scanning logic above, so generate an error
if it is ever expanded.

1957 \newcommand\SB@trend{%

1958 \SB@Error{Internal Error: Transposition failedl}
1959 {This error should not occur.}/

1960 }

15.9 Measure Bars

The following code handles the typesetting of measure bars.

\SB@metertop These macros remember the current numerator and denominator of the meter.

\SB@meterbotigs1 \newcommand\SBemetertop{}
1962 \newcommand\SB@meterbot{}

\meter Set the current meter without producing an actual measure bar yet.
1963 \newcommand\meter [2] {\gdef\SB@metertop{#1}\gdef\SB@meterbot{#2}}

\SB@measuremark Normally measure bar boxes should be as thin as possible so that they can be
slipped into lyrics without making them hard to read. But when two measure bars
appear consecutively, they need to be spaced apart more so that they look like
two separate lines instead of one thick line. To achieve this, there needs to be a
way to pull a vbox off the current list and determine whether or not it is a box
that contains a measure bar. The solution is to insert a mark (\SB@measuremark)
at the top of each measure bar vbox. We can then see whether this measure bar
immediately follows another measure bar by using \vsplit on \lastbox.

1964 \newcommand\SB@measuremark{SB@IsMeasure}

\SB@makembar Typeset a measure bar. If provided, (argl) is the numerator and (arg2) is the
denominator of the meter to be rendered above the bar. If those arguments are
left blank, render a measure bar without a meter marking.

1965 \newcommand\SB@makembar [2] {%

1966 \ifSB@inverse\else’,

1967 \ifSB@inchorus\else\SB@errmbar\fiJ
1968 \fi%

1969 \ifhmode%

1970 \SB@skip\lastskip\unskip%

1971 \setbox\SBGbox\lastbox

1972 \copy\SB@box%

1973 \ifvbox\SB@box/

1974 \begingroup/

1975 \setbox\SB@boxii\copy\SBebox%

112

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

\vbadness\@M\vfuzz\maxdimeny,
\setbox\SB@boxii¥
\vsplit\SB@boxii to\maxdimeny,
\endgroup%
\long\edef\SB@temp{\splitfirstmark}/
\ifx\SB@temp\SBOmeasuremarky,
\penalty100\hskiplemy
\else,
\penalty100\hskip\SB@skip%
\fi%
\else,
\penalty100\hskip\SB@skip%
\fi%
\fi%
\ifvmode\leavevmode\fi},
\setbox\SB@box\hbox{{\meterfont\relax#1}}/,
\setbox\SB@boxii\hbox{{\meterfont\relax#2}}
\SB@dimen\wd\ifdim\wd\SB@box>\wd\SB@boxii\SB@box\else\SB@boxii\fi%
\SB@dimenii\baselineskip%
\advance\SB@dimenii-2\p@%
\advance\SB@dimenii-\ht\SB@box’
\advance\SB@dimenii-\dp\SB@box
\advance\SB@dimenii-\ht\SB@boxii
\advance\SB@dimenii-\dp\SB@boxii%
\let\SB@temp\relax
\ifdim\SB@dimen>\z@%
\advance\SB@dimenii-.75\p@/
\def\SB@temp{\kern.75\p@}/,
\fi%
\SB@maxmin\SB@dimen<{.5\p@}%
\SB@maxmin\SB@dimenii<\z@%
\vbox{%
\mark{\SB@measuremark},
\hbox to\SB@dimen{’
\hfilY,
\box\SB@box%
\hfilY,
1Y
\nointerlineskip’,
\hbox to\SB@dimen{’
\hfilY,
\box\SB@boxii%
\hfil¥,
1Y
\SB@temp?,
\nointerlineskip
\hbox to\SB@dimen{%
\hfilY,
\vrule\@uidth.5\p@\Gheight\SB@dimenii}
\hfilY,

113

2026 1Y

2027 }h
2028 \meter{}{}%
2029 }

\mbar The \mbar macro invokes \SB@mbar, which gets redefined by macros and options
that turn measure bars on and off.

2030 \newcommand\mbar{\SB@mbar}

\measurebar Make a measure bar using the most recently defined meter. Then set the meter to
nothing so that the next measure bar will not display any meter unless the meter
changes.

2031 \newcommand\measurebar{/,
2032 \mbar\SB@metertop\SB@meterbot’
2033 }

\SB@repcolon Create the colon that preceeds or follows a repeat sign.

2034 \newcommand\SB@repcolon{{’

2035 \usefont{0T1}{cmss}{m}{n}\selectfont?
2036 \ifchorded,

2037 \baselineskip.5\SB@dimen}

2038 \vbox{\hbox{:}\hbox{:}\kern.5\p@}}
2039 \else}

2040 \raise.5\p@\hbox{:}/

2041 \fi%

2042 }}

\lrep Create a begin-repeat sign.

2043 \newcommand\lrep{%

2044 \SB@dimen\baselineskip

2045 \advance\SB@dimen-2\p@Y

2046 \vrule\@widthl.5\p@\@height\SB@dimen\@depth\p@’
2047 \kernl.5\p@}

2048 \vrule\@width.5\p@\@height\SB@dimen\@depth\p@%
2049 \SB@repcolon,

2050 }

\rrep Create an end-repeat sign.

2051 \newcommand\rrep{%

2052 \SB@dimen\baselineskip%

2053 \advance\SB@dimen-2\p@Y

2054 \SB@repcolon,

2055 \vrule\@width.5\p@\@height\SB@dimen\@depth\p@%
2056 \kernl.5\p@},

2057 \vrule\@widthl.5\p@\@height\SB@dimen\@depth\p@’
2058 }

114

15.10 Lyric Scanning

The obvious way to create a chord macro is as a normal macro with two ar-
guments, one for the chord name and one for the lyrics to go under the chord—
e.g. \chord{(chordname)}{(lyric)}. However, in practice such a macro is extremely
cumbersome and difficult to use. The problem is that in order to use such a macro
properly, the user must remember a bunch of complex style rules that govern what
part of the lyric text needs to go in the (lyric) parameter and what part should
be typed after the closing brace. To avoid separating a word from its trailing
punctuation, the (lyric) parameter must often include punctuation but not certain
special punctuation like hyphens, should include the rest of the word but not if
there’s another chord in the word, should omit measure bars but only if measure
bars are being shown, etc. This is way too difficult for the average user.

To avoid this problem, we define chords using a one-argument macro (the
argument is the chord name), but with no explicit argument for the lyric part.
Instead, the macro scans ahead in the input stream, automatically determining
what portion of the lyric text that follows should be sucked in as an implicit second
argument. The following code does this look-ahead scanning.

\ifSB@wordends Chord macros must look ahead in the input stream to see whether this chord is
\ifSB@brokenword immediately followed by whitespace or the remainder of a word. If the latter,
hyphenation might need to be introduced. These macros keep track of the need

for hyphenation, if any.

2059 \newif\ifSB@wordends
2060 \newif\ifSB@brokenword

\SB@lyric Lyrics appearing after a chord are scanned into the following token list register.
2061 \SB@newtoks\SB@lyric

\SBenumhyps Hyphens appearing in lyrics require special treatment. The following counter
counts the number of explicit hyphens ending the lyric syllable that follows the
current chord.

2062 \SB@newcount\SB@numhyps

\SB@lyricnohyp When a lyric syllable under a chord ends in exactly one hyphen, the following
token register is set to be the syllable without the hyphen.

2063 \SB@newtoks\SBO@lyricnohyp

\SBelyricbox The following two boxes hold the part of the lyric text that is to be typeset under
\SB@chordbox the chord, and the chord text that is to be typeset above.

2064 \SB@newbox\SB@lyricbox
2065 \SB@newbox\SB@chordbox

\SB@chbstok When \MultiwordChords is active, the following reserved control sequence remem-
bers the first (space) token not yet included into the \SB@lyricbox box.

2066 \newcommand\SB@chbstok{}

115

\SB@setchord

\SB@outertest
\SB@otesta
\SB@otestb

The following macro typesets its argument as a chord and stores the result in
box \SB@chordbox for later placement into the document. The hat token (7) is
redefined so that outside of math mode it suppresses chord memorization, but
inside of math mode it retains its usual superscript meaning. If memorization
is active, the chord’s token sequence is stored in the current replay register. If
\SB@chordbox is non-empty, the new chord is appended to it rather than replacing
it. This allows consecutive chords not separated by whitespace to be typeset as a
single chord sequence atop a common lyric.

2067 \newcommand\SB@setchord{}

2068 {

2069 \catcode‘"\active

2070 \gdef\SB@setchord#1{%

2071 \SB@gettabindtrue\SB@nohattrue,
2072 \setbox\SB@chordbox\hbox{%
2073 \unhbox\SB@chordboxY
2074 \begingroup’
2075 \ifSB@trackch,
2076 \let\SB@activehat\SBChat@try,
2077 \elsel,
2078 \let\SB@activehat\SBGhat@notr
2079 \fi%
2080 \let~\SBQactivehat?,
2081 \printchord{%
2082 \ifSB@firstchord\else\kern.15em\fi%
2083 \vphantom/%
2084 \transposehere{#1}/,
2085 \kern.2em,
2086 Yh
2087 \endgroup’%
2088 Yh
2089 \SB@gettabindfalse,
2090 \ifSB@trackch\ifSB@nohat}
2091 \global\SB@creg\expandafter{\the\SBAcreg#1\\}%
2092 \fi\fi%
2093 \let\SB@noreplay\@firstofone},
2094 }
2095 }
The lyric-scanning code must preemptively determine whether the next token

is a macro declared \outer before it tries to accept that token as an argument.
Otherwise TEX will abort with a parsing error. Macros declared \outer are not
allowed in arguments, so determining whether a token is \outer is a delicate
process. The following does so by consulting \meaning. A macro can be identified
as \outer if its meaning has the word “\outer” before the first colon.

2096 \newcommand\SB@outertest{%

2097 \expandafter\SB@otesta\meaning\SB@next:\SBQotestal,

2098 }

2099 \newcommand\SB@otesta{}

116

\SBQUTFtest
\SB@U@two
\SB@U@three
\SBeU@four
\SBQQUTFtest

\DeclareLyricChar
\DeclareNonLyric
\DeclareNoHyphen

\SB@declare

2100 \edef\SB@otesta#l:#2\SBCotesta{’

2101 \noexpand\SBQotestb},

2102 #1\string\outer,

2103 \noexpand\SBQotestb},

2104 }

2105 \newcommand\SBQ@otestb{}

2106 \expandafter\def\expandafter\SBQotestby

2107 \expandafter#\expandafterl\string\outer#2\SB@otestb{’
2108 \def\SB@temp{#21}/

2109 \ifx\SB@temp\Q@empty\SBOtestfalse\else\SBQtesttrue\fiy,
2110 }

To support UTF-8 encoded IXTEX source files, we need to be able to
multibyte characters during the lyric scanning process. Alas, the utf8

identify

.def file

provides no clean way of identifying the macros it defines for this purpose. The
best solution seems to be to look for any token named \UTFviii@...Qoctets in

the top-level expansion of the macro.

2111 \newcommand\SB@UTFtest{}

2112 \edef\SBQUTFtest#1{/

2113 \noexpand\expandafter,

2114 \noexpand\SBQQUTFtestY

2115 \noexpand\meaning#1J,

2116 \string\UTFviii@zero@octets

2117 \noexpand\SBQQUTFtestY

2118 }

2119 \newcommand\SBQU@two{\global\SB@cnt\twe}

2120 \newcommand\SB@U@three{\global\SB@cnt\thr@@}
2121 \newcommand\SB@U@four{\global\SB@cnt4\relax}
2122 \newcommand\SB@Q@UTFtest{}

2123 {\escapechar\m@ne

2124 \xdef\SB@temp{\string\@octets}}

2125 \edef\SBOtemp{##1\string\UTFviii@##2\SBQtemp}
2126 \expandafter\def\expandafter\SBOQQUTFtest\SBOtemp#3\SBOQUTFtest{%
2127 \SB@cnt\z@%

2128 {\csname SBQU®@#2\endcsnamel},

2129 }

When scanning the lyric text that follows a chord, it is necessary to distinguish
accents and other intra-word macros (which should be included in the under-chord
lyric text) from other macros (which should be pushed out away from the text).
The following macros allow users to declare a token to be lyric-continuing or

lyric-ending.
2130 \newcommand\SB@declare [3]{%
2131 \afterassignment\iffalse\let\SB@next= #3\relax\fiY
2132 \SBQUTFtest\SB@nextY
2133 \ifcase\SB@cnt},

2134 \ifcat\noexpand#3\relaxy,
2135 \SB@addNtest\SBO@macrotests#1#2#3J,
2136 \else\ifcat\noexpand#3.7

117

\SB@lettertests
\SB@macrotests
\SB@multitests
\SB@othertests

\SB@addDtest

\SB@addNtest

2137 \SB@addDtest\SB@othertests#1#2,

2138 \else\ifcat\noexpand#34J,

2139 \SB@addDtest\SB@lettertests#1#2
2140 \else%

2141 \SB@addDtest\relax0#2

2142 \fi\fi\fi¥%

2143 \or

2144 \SB@addNtest\SB@macrotests#1#2#3Y,
2145 \else),

2146 \SB@addMtest\SBOmultitests#1#2#3\relax\relax\relaxJ,
2147 \fi%

2148 }

2149 \newcommand\DeclareLyricChar{\SB@declare\SB@testtrue0}
2150 \newcommand\DeclareNonLyric{\SB@declare\SB@testfalse\SB@testfalse}
2151 \newcommand\DeclareNoHyphen{\SB@declare\SB@testfalse\SBOtesttrue}

For speed, token tests introduced by \DeclareLyricChar and friends are broken
out into separate macros based on category codes.

2152 \newcommand\SB@lettertests{}

2153 \newcommand\SB@macrotests{}

2154 \newcommand\SB@multitests{}

2155 \newcommand\SB@othertests{}

The following macros add tests to the test macros defined above. In each,
(argl) is the test macro to which the test should be added, (arg2) and (arg3)
is the code to be executed at scanning-time and at hyphenation-time if the test
succeeds (or “0” if no action is to be performed), and (arg4) is the token to which
the currently scanned token should be compared to determine whether it matches.

A definition-test: The test succeeds if the next lyric token has the same meaning
(at test-time) of the non-macro, non-active character token that was given to the
\Declare macro.

2156 \newcommand\SB@addDtest [3]{%

2157 \ifxO#2\else),

2158 \def#1{{\csname SB@!\meaning\SB@next\endcsname}}}

2159 \expandafter\def\csname SBQ!\meaning\SB@next\endcsname{\global#21}},

2160 \fi%

2161 \ifxO#3\else),

2162 \expandafter\def\csname SBOHT@\meaning\SB@next\endcsname{\global#3}}

2163 \fi%

2164 }

A name-test: The test succeeds if the next token is a non-\outer macro or active
character and its \stringified name matches the \stringified name of the control
sequence that was given to the \Declare macro.

2165 \newcommand\SB@addNtest [4]{%

2166 \ifxO#2\else’,

2167 \def#1{{\csname SB@!\SB@nextname\endcsnamel}}/

2168 \expandafter\def\csname SBQ!\string#4\endcsname{\global#2}%

118

2169
2170
2171
2172

2173 }

\fi%
\ifx0#3\else%

\expandafter\def\csname SBOHT@\string#4\endcsname{\global#3}}
\fi%

\SBeaddMtest A multibyte-test: The test succeeds if the next lyric token is the beginning of a
UTF-8 encoded multibyte character sequence that matches the multibyte sequence
given to the \Declare macro.

2174 \newcommand\SB@addMtest [7]1{%

2175 \edef\SB@temp{%

2176 \string#4J,

2177 \ifx\relax#5\else\string#5\fi/,

2178 \ifx\relax#6\else\string#6\fi/,

2179 \ifx\relax#7\else\string#7\fi},

2180 }%

2181 \ifxO#2\else},

2182 \def#1{{\csname SB@!\SB@nextname\endcsname}}’

2183 \expandafter\def\csname SB@!\SB@temp\endcsname{\global#2}/,

2184 \fi},
2185 \ifxO#3\else,

2186 \expandafter\def\csname SBOHTQ\SBOtemp\endcsname{\global#3}Y,

2187 \fi%
2188 }

The following code declares the common intra-word macros provided by TEX
(as listed on p. 52 of The TEXbook) to be lyric-continuing.

2189 \DeclareLyricChar\‘
2190 \DeclareLyricChar\’
2191 \DeclareLyricChar\~
2192 \DeclareLyricChar\"
2193 \DeclareLyricChar\~
2194 \DeclareLyricChar\=
2195 \DeclareLyricChar\.
2196 \DeclareLyricChar\u
2197 \DeclareLyricChar\v
2198 \DeclareLyricChar\H
2199 \DeclareLyricChar\t
2200 \DeclareLyricChar\c
2201 \DeclareLyricChar\d
2202 \DeclareLyricChar\b
2203 \DeclareLyricChar\oe
2204 \DeclareLyricChar\OE
2205 \DeclareLyricChar\ae
2206 \DeclareLyricChar\AE
2207 \DeclareLyricChar\aa
2208 \DeclareLyricChar\AA
2209 \DeclareLyricChar\o
2210 \DeclareLyricChar\0

119

2211 \DeclareLyricChar\1l

2212 \DeclareLyricChar\L

2213 \DeclareLyricChar\ss

2214 \DeclareLyricChar\i

2215 \DeclareLyricChar\j

2216 \DeclareLyricChar\/

2217 \DeclareLyricChar\-

2218 \DeclareLyricChar\discretionary

We declare \par to be lyric-ending without introducing hyphenation. The
\par macro doesn’t actually appear in most verses because we use \obeylines,
but we include a check for it in case the user says \par explicitly somewhere.
2219 \DeclareNoHyphen\par

\SB@bracket This macro gets invoked by the \ [macro whenever a chord begins. It gets redefined
by code that turns chords on and off, so its initial definition doesn’t matter.

2220 \newcommand\SB@bracket{}

\SB@chord Begin parsing a chord macro. While parsing the chord name argument, we set
some special catcodes so that chord names can use # and & for sharps and flats.

2221 \newcommand\SB@chord{\SB@begincname\SB@@chord}

\SB@begincname While parsing a chord name, certain characters such as # and & are temporarily set
\SB@endcname active so that they can be used as abbreviations for sharps and flats. To accomplish
this, \SB@begincname must always be invoked before any macro whose argument is
a chord name, and \SB@endcname must be invoked at the start of the body of any
macro whose argument is a chord name. To aid in debugging, we also temporarily
set (return) characters and chord macros \outer. This will cause TEX to halt with
a runaway argument error on the correct source line if the user forgets to type a
closing end-brace (a common typo). Colon characters are also set non-active to
avoid a conflict between the Babel French package and the \gtab macro.
2222 \newcommand\SB@begincname{}
2223 {\catcode‘\""M\active
2224 \gdef\SB@begincname{Y,
2225 \begingroup’

2226 \catcode ‘##\active\catcode‘&\activey,
2227 \catcode‘:12\relax’,

2228 \catcode‘\""M\active\SBQouter\def~"M{1}%
2229 \SB@outer\def\ [{}%

2230 \chordlocals\relax},

2231 }

2232 }

2233 \newcommand\SB@endcname{}
2234 \let\SB@endcname\endgroup

\SBenbsp Non-breaking spaces (~) should be treated as spaces by the lyric-scanner code that
follows. Although ~ is usually an active character that creates a non-breaking
space, some packages (e.g., the Babel package) redefine it to produce accents, which
are typically not lyric-ending. To distinguish the real ~ from redefined ~, we need

120

to create a macro whose definition is the non-breaking space definition normally
assigned to ~.

2235 \newcommand*\SB@nbsp{\nobreakspace{}}

\SBefirstchord The following conditional is true when the current chord is the first chord in a
sequence of one or more chord macros.

2236 \newif\ifSB@firstchord\SB@firstchordtrue

\SBeechord Finish processing the chord name and then begin scanning the implicit lyric
argument that follows it. This is the main entrypoint to the lyric-scanner code.

2237 \newcommand*\SB@@chord{}

2238 \def\SB@@chord#1] {%

2239 \SB@endcname?,

2240 \ifSB@firstchord

2241 \setbox\SB@lyricbox\hbox{\kern\SBetabindent}/,
2242 \global\SB@tabindent\z@Y

2243 \SB@lyric{}%

2244 \SB@numhyps\z0Y%

2245 \SB@spcinit¥%

2246 \setbox\SB@chordbox\box\voidb@x}
2247 \fi},

2248 \SB@setchord{#1})

2249 \SB@firstchordfalsey,

2250 \let\SB@dothis\SB@chstart},

2251 \SB@chscan},

2252 }

\MultiwordChords The \SB@spcinit macro is invoked at the beginning of the lyric scanning process.
\SB@spcinit By default it does nothing, but if \MultiwordChords is invoked, it initializes the
lyric-scanner state to process spaces as part of lyrics.
2253 \newcommand\SB@spcinit{}
2254 \newcommand\MultiwordChords{’
2255 \def\SB@spcinit{%

2256 \let\SB@chdone\SB@chlyrdone,
2257 \let\SB@chimpspace\SBechnxtdone,
2258 \let\SB@chexpspace\SBAchnxtdone,
2259 \let\SB@chespace\SB@chendspacey,
2260 }%

2261 }

\SB@chscan This is the main loop of the lyric-scanner. Peek ahead at the next token without
\SB@chmain consuming it, then execute a loop body based on the current state (\SB@dothis),
and finally go to the next iteration (\SB@donext).

2262 \newcommand\SB@chscan{’,

2263 \let\SB@nextname\relax},

2264 \futurelet\SB@next\SB@chmainy

2265 }

2266 \newcommand\SB@chmain{\SB@dothis\SB@donext}

121

\SB@chnxtrelax To shorten the lyric parser macros that follow and thereby improve their speed,
\SBechnxtstep we here define some abbreviations for common logic in untaken branches.
\SB@chnxtdonesss7 \newcommand\SB@chnxtrelax{\let\SB@donext\relax}

2268 \newcommand\SB@chnxtstep{\let\SB@donext\SB@chstep}
2269 \newcommand\SB@chnxtdone{\let\SB@donext\SB@chdone}

Warning: In the lyric-scanner macros that follow, \SB@next might be a macro
declared \outer. This means that it must never be passed as an argument to a
macro and it must never explicitly appear in any untaken branch of a conditional.
If it does, the TEX parser will complain of a runaway argument when it tries to
skip over an \outer macro while consuming tokens at high speed.

\SBechstart We begin lyric-scanning with two special cases: (1) If the chord macro is immediately
followed by another chord macro with no intervening whitespace, drop out of the
lyric scanner and reenter it when the second macro is parsed. The chord texts will
get concatenated together above the lyric that follows. (2) If the chord macro is
immediately followed by one or more quote tokens, then consume them all and
output them before the chord. This causes the chord to sit above the actual word
instead of the left-quote or left-double-quote symbol, which looks better.

2270 \newcommand\SB@chstart{/

2271 \ifx\SB@next\[\SB@chnxtrelax},

2272 \else\ifx\SB@next\SB@activehat\SB@chnxtrelaxy,
2273 \else\ifx\SB@next\ch\SB@chnxtrelax¥

2274 \else\ifx\SB@next\mch\SB@chnxtrelaxy,

2275 \else\ifx\SB@next ‘\SB@chnxtstep

2276 \else\ifx\SB@next’\SBOchnxtstep

2277 \else\ifx\SB@next"\SB@chnxtstep%

2278 \else}

2279 \the\SB@lyric¥

2280 \SB@lyric{}%

2281 \SB@firstchordtrue},

2282 \let\SB@dothis\SB@chnorm},
2283 \SB@chnormy

2284 \fi\fi\fi\fi\fi\fi\fi%

2285 }

\SBechnorm First, check to see whether the lyric token is a letter. Since that’s the most common
case, we do this check first for speed.

2286 \newcommand\SB@chnorm{’
2287 \ifcat\noexpand\SB@next A%

2288 \SB@testtrue\SB@lettertestsy
2289 \ifSBQtestY

2290 \SB@chespace\SBAchnxtstep/
2291 \else%

2292 \SB@chnxtdoneY

2293 \fi%

2204 \else},

2295 \SB@chtrymacroY

122

2296 \fi%
2297 }

\SBechtrymacro Next, check to see whether it’s a macro or active character. We do these checks
next because these are the only cases when the token might be \outer. Once we
eliminate that ugly possibility, we can write the rest of the code without having to
worry about putting \SB@next in places where \outer tokens are illegal.

2298 \newcommand\SB@chtrymacro{’
2299 \ifcat\noexpand\SB@next\relaxy,

2300 \SB@chmacro?
2301 \else),

2302 \SB@chother?,
2303 \fi%

2304 }

\SB@chother The token is not a letter, macro, or active character. The only other cases of
interest are spaces, braces, and hyphens. If it’s one of those, take the appropriate
action; otherwise end the lyric here. Since we’ve eliminated the possibility of
macros and active characters, we can be sure that the token isn’t \outer at this
point.

2305 \newcommand\SB@chother{},

2306 \ifcat\noexpand\SB@next\@sptokeny,
2307 \SB@chexpspace,

2308 \else\ifcat\noexpand\SB@next\bgroup’

2309 \SB@chespace\let\SBCdonext\SB@chbgroup/
2310 \else\ifcat\noexpand\SB@next\egroup/

2311 \SB@chespace\let\SB@donext\SB@chegroup/
2312 \else\ifx\SB@next-%

2313 \SB@numhyps\@ne\relax

2314 \SB@lyricnohyp\expandafter{\the\SBO@lyricl}/,
2315 \let\SB@dothis\SB@chhyph

2316 \SB@chespace\SB@chnxtstep/

2317 \else\ifcat\noexpand\SB@next.Y

2318 \SB@testtrue\SBQothertests

2319 \1fSB@test}

2320 \SB@chespace\SBA@chnxtstep/

2321 \elsel

2322 \SB@chnxtdone},

2323 \£fiY

2324 \else},

2325 \SB@chespace\SBAchnxtstep

2326 \fi\fi\fi\fi\fi%

2327 }

\SB@chmacro The lyric-scanner has encountered a macro or active character. If it’s \outer, it
should never be used in an argument, so stop here.
2328 \newcommand\SB@chmacro{

2329 \SB@outertest}
2330 \ifSBQ@test,

123

2331 \SB@chnxtdone},
2332 \else’,

2333 \let\SB@donext\SB@chgetname,
2334 \fi},
2335 }

\SB@chgetname We’ve encountered a non-\outer macro or active character. Use \string to get
its name, but insert the token back into the input stream since we haven’t decided
whether to consume it yet.

2336 \newcommand\SB@chgetname [1]{%
2337 \edef\SB@nextname{\string#1},
2338 \SB@@chmacro\SB@donext#1/
2339 }

\SBeechmacro The lyric-scanner has encountered a non-\outer macro or active character. Its
\stringified name has been stored in \SB@nextname. Test to see whether it’s a
known macro or the beginning of a multibyte-encoded international character. If
the former, dispatch some macro-specific code to handle it. If the latter, grab the
full multibyte sequence and include it in the lyric.

2340 \newcommand\SB@@chmacro{’
2341 \ifx\SB@next\SBQ@activehat},

2342 \SB@chnxtdone’,

2343 \else\ifx\SBOnext\SB@pary,

2344 \SB@chnxtdone’,

2345 \else\ifx\SB@next\measurebar?,

2346 \SB@chmbar’,

2347 \else\ifx\SB@next\mbar?,

2348 \SB@chmbar?,

2349 \else\ifx\SB@next\ch,

2350 \SB@chespace\let\SB@donext\SB@chlig}

2351 \else\ifx\SB@next\mch,

2352 \SB@chespace\let\SB@donext\SBOmchlig}

2353 \else\ifx\SBG@next\ 7%

2354 \SB@chimpspace,

2355 \else\ifx\SB@next\SB@nbsp/

2356 \SB@chimpspace,

2357 \else,

2358 \SBQUTFtest\SBGnext/,

2359 \ifcase\SB@cnt\SB@chothermacy,

2360 \or\or\SB@chespace\let\SB@donext\SB@chsteptwoy,
2361 \or\SB@chespace\let\SB@donext\SB@chstepthree,
2362 \or\SB@chespace\let\SB@donext\SBQ@chstepfour\fi},
2363 \fi\EI\EI\EI\Ei\£i\£i\£i)}

2364 }

\SBechothermac The lyric-scanner has encountered a macro or active character that is not \outer,
not a known macro that requires special treatment, and not a multibyte interna-
tional character. First, check the macro’s name (stored in \SB@nextname) to see
whether it begins with a non-escape character. If so, it’s probably an accenting

124

or punctuation character made active by the inputenc or babel packages. Most
such characters should be included in the lyric, so include it by default; otherwise
exclude it by default. The user can override the defaults using \DeclareLyricChar
and friends.

2365 \newcommand\SB@chothermac{},

2366 \SB@testfalsel,

2367 \afterassignment\iffalse},

2368 \SB@cnt\expandafter ‘\SB@nextname x\fi%

2369 \ifnum\the\catcode\SB@cnt=\z@\else\SB@testtrue\fi},
2370 \SB@macrotests},

2371 \ifSB@test’

2372 \SB@chespace\SBA@chnxtstepl
2373 \else,

2374 \SB@chnxtdone},

2375 \fi},

2376 }

\SBechstep We've encountered one or more tokens that should be included in the lyric text.

\SBechsteptwo (More than one means we've encountered a multibyte encoding of an international

\SB@chstepthree character.) Consume them (as arguments to this macro) and add them to the list
\SBechstepfour of tokens we’ve already consumed.

\SBOchmultis377 \newcommand\SB@chstep [1]{%
\SB@chmstop2378 \SB@lyric\expandafter{\the\SB@lyric#1}%
2379 \SBQ@chscan},
2380 }
2381 \newcommand\SB@chsteptwo [2] {\SB@chmulti{#1#2}{\string#1\string#2}}
2382 \newcommand\SB@chstepthree [3]{%
2383 \SB@chmulti{#1#2#3}{\string#1\string#2\string#3}/
2384 }
2385 \newcommand\SB@chstepfour [4]{},
2386 \SB@chmulti{#1#2#3#4}{\string#1\string#2\string#3\string#4}J,
2387 }
2388 \newcommand\SB@chmulti [2]{%
2389 \def\SB@next{#11}/
2390 \edef\SB@nextname{#21}7
2391 \SBQ@testtrue\SBOmultitests
2392 \ifSB@test}

2393 \SB@lyric\expandafter{\the\SB@lyric#1}}
2394 \expandafter\SB@chscany,

2395 \else%

2396 \expandafter\SB@chmstop

2397 \fi%

2398 }

2399 \newcommand\SB@chmstop{\expandafter\SB@chdone\SB@next}

\SBechhyph We’ve encountered a hyphen. Continue to digest hyphens, but terminate as soon
as we see anything else.

2400 \newcommand\SB@chhyph{’,
2401 \ifx\SB@next-%

125

\SB@chimpspace
\SB@chexpspace

\SB@chespace
\SB@chendspace

\SB@chbspace
\SB@chgetspace

2402 \advance\SBOnumhyps\@ne\relax,

2403 \SB@chnxtstep%
2404 \else,

2405 \SB@chnxtdone},
2406 \fiY,

2407 }

We’ve encountered an implicit or explicit space. Normally this just ends the lyric,
but if \MultiwordChords is active, these macros both get redefined to process the
space.

2408 \newcommand\SB@chimpspace{}

2409 \let\SB@chimpspace\SB@chnxtdone

2410 \newcommand\SB@chexpspace{}

2411 \let\SB@chexpspace\SB@chnxtdone

The \SB@chespace macro gets invoked by the lyric-scanner just before a non-space
token is about to be accepted as part of an under-chord lyric. Normally it does
nothing; however, if \MultiwordChords is active, it gets redefined to do one of
three things: (1) Initially it is set equal to \SB@chendspace so that if the very
first token following the chord macro is not a space, the lyric-scanner macros are
redefined to process any future spaces encountered. Otherwise the very first token is
a space, and the lyric ends immediately. (2) While scanning non-space lyric tokens,
it is set to nothing, since no special action needs to be taken until we encounter
a sequence of one or more spaces. (3) When a space token is encountered (but
not the very first token after the chord macro), it is set equal to \SB@chendspace
again so that \SB@chendspace is invoked once the sequence of one or more space
tokens is finished.

2412 \newcommand\SB@chespace{}

2413 \newcommand\SB@chendspace{

2414 \let\SB@chdone\SB@chlyrdone’

2415 \def\SB@chexpspace{\SB@chbspace\SB@chexpspace}’

2416 \def\SB@chimpspace{\SBA@chbspace\SBA@chimpspacel}

2417 \def\SB@chespace{}%

2418 }

The \SB@chbspace macro gets invoked when \MultiwordChords is active and the
lyric-scanner has encountered a space token that was immediately preceded by a
non-space token. Before processing the space, we add all lyrics seen so far to the
\SB@lyricbox and check its width. If we’ve seen enough lyrics to match or exceed
the width of the chord, a space stops the lyric-scanning process. (This is important
because it minimizes the size of the chord box, providing as many line breakpoints
as possible to the paragraph-formatter.)

Otherwise we begin scanning space tokens without adding them to the lyric
until we see what the next non-space token is. If the next non-space token would
have ended the lyric anyway, roll back and end the lyric here, reinserting the space
tokens back into the token stream. If the next non-space token would have been
included in the lyric, the lyric-scanner proceeds as normal.

126

2419 \newcommand\SB@chbspace{’,
2420 \setbox\SB@lyricbox\hbox{}

2421 \unhbox\SB@lyricbox
2422 \the\SB@lyric%
2423 }h

2424 \SB@lyric{}/
2425 \ifdim\wd\SB@lyricbox<\wd\SB@chordbox

2426 \let\SB@chbstok= \SB@nextY

2427 \def\SB@chexpspace{\let\SB@donext\SBAchgetspacel,
2428 \let\SB@chimpspace\SBQchnxtstep

2429 \let\SB@chespace\SB@chendspace},

2430 \let\SB@chdone\SB@chspcdonel,

2431 \elsek

2432 \let\SB@chimpspace\SB@chnxtdone,

2433 \let\SB@chexpspace\SBAchnxtdone,

2434 \fi},

2435 }

2436 \newcommand\SB@chgetspace{
2437 \SB@appendsp\SB@lyric

2438 \let\SB@nextname\relax,
2439 \afterassignment\SB@chscany
2440 \let\SB@next= }

\SBechmbar We’ve encountered a measure bar. Either ignore it or end the lyric text, depending
on whether measure bars are being displayed.

2441 \newcommand\SB@chmbar{}
2442 \ifmeasures,

2443 \SB@chnxtdone},

2444 \else}

2445 \SB@chespace\SBAchnxtstepl
2446 \fiY

2447 }

\SB@chbgroup We’ve encountered a begin-group brace. Consume the entire group that it begins,
and add it to the list of tokens including the begin and end group tokens.
2448 \newcommand\SB@chbgroup [1]{%
2449 \SB@lyric\expandafter{\the\SBO@lyric{#1}}/,
2450 \SB@chscan},
2451 }

\SB@chegroup We've encountered an end-group brace whose matching begin-group brace must
\SB@chegrpscan have come before the chord macro itself. This forcibly ends the lyric text. Before
\SB@chegrpmacro stopping, we must set \SB@next to the token following the brace and \SB@nextname
\SB@chegrpouter to its \stringified name so that \SB@emitchord will know whether to add hyphen-
\SB@chegrpname ation. Therefore, we temporarily consume the end-group brace, then scan the next
\SB@chegrpdone token without consuming it, and finally reinsert the end-group brace and stop.
2452 \newcommand\SB@chegroup{’,
2453 \let\SB@nextname\relax,
2454 \afterassignment\SB@chegrpscany,

127

2455 \let\SB@next= }

2456 \newcommand\SB@chegrpscan{/,

2457 \futurelet\SB@next\SBQ@chegrpmacro
2458 }

2459 \newcommand\SB@chegrpmacro{/

2460 \ifcat\noexpand\SB@next\relaxy,

2461 \expandafter\SBQ@chegrpoutery,
2462 \else}

2463 \expandafter\SB@chegrpdone’,
2464 \fi},

2465 }

2466 \newcommand\SB@chegrpouter{/,
2467 \SBQ@outertest
2468 \ifSB@test%

2469 \expandafter\SB@chegrpdone’,
2470 \else),

2471 \expandafter\SBAchegrpname,
2472 \fi%

2473 }

2474 \newcommand\SB@chegrpname [1]{%

2475 \edef\SB@nextname{\string#1},

2476 \SB@chegrpdone#1Y

2477 }

2478 \newcommand\SB@chegrpdone{\SBA@chdone\egroup}

\SBechlig We’ve encountered a \ch chord-over-ligature macro, or an \mch measurebar-and-
\SB@mchlig chord-over-ligature macro. Consume it and all of its arguments, and load them
into some registers for future processing. (Part of the ligature might fall into this
lyric text or might not, depending on whether we decide to add hyphenation.)
Then end the lyric text here.
2479 \newcommand\SB@chlig[5]{%
2480 \gdef\SB@ligpre{{#3}}/
2481 \gdef\SB@ligpost{\ [#2]{#4}3}%
2482 \gdef\SB@ligfull{%
2483 \ [\SB@noreplay{\hphantom{{\lyricfont\relax#3}}}#2] {#5}%

2484 Y%
2485 \SB@chdone/,
2486 }

2487 \newcommand\SB@mchlig[5]{%

2488 \SB@lyric\expandafter{\the\SBQ@lyric#3}/
2489 \let\SB@next\measurebar,

2490 \edef\SB@nextname{\string\measurebar}y,
2491 \gdef\SB@ligpost{\measurebar\ [#2]{#4}}/
2492 \gdef\SB@ligfull{\measurebar\ [#2]{#4}}/
2493 \SBQ@chdone},

2494 }

\SBechdone The \SB@chdone macro is invoked when we’ve decided to end the lyric text (usu-
\SB@chlyrdone ally because we’ve encountered a non-lyric token). Normally this expands to
\SB@chspcdone

128

\SB@ligpre
\SB@ligpost
\SB@ligfull

\SB@clearlig

\SB@emitchord

\SB@chlyrdone, which adds any uncontributed lyric material to the \SB@1lyricbox
and jumps to the main chord formatting macro. However, if \MultiwordChords is
active and if the lyric ended with a sequence of one or more space tokens, then we
instead reinsert the space tokens into the token stream without contributing them
to the \SB@lyricbox.

2495 \newcommand\SB@chlyrdone{’

2496 \setbox\SB@lyricbox\hbox{%
2497 \unhbox\SB@lyricbox

2498 \ifnum\SB@numhyps=\@ne,
2499 \the\SB@lyricnohyp/
2500 \elsel

2501 \the\SB@lyric

2502 \fi%

2503 }%

2504 \SB@emitchord,

2505 }

2506 \newcommand\SB@chspcdone{’,

2507 \let\SB@nextname\relaxy,

2508 \let\SB@next= \SB@chbstok

2509 \expandafter\SB@emitchord\the\SB@lyric},
2510 }

2511 \newcommand\SB@chdone{}

2512 \1et\SB@chdone\SB@chlyrdone

The following three macros record arguments passed to a \ch macro that concludes
the lyric text of the \ [] macro currently being processed.
2513 \newcommand\SB@ligpre{}

2514 \newcommand\SB@ligpost{}
2515 \newcommand\SB@ligfull{}

Clear all ligature-chord registers.

2516 \newcommand\SB@clearlig{%
2517 \gdef\SB@ligpre{}/

2518 \gdef\SB@ligpost{}%

2519 \gdef\SB@ligfull{}%
2520 }

15.11 Chords

The \SB@emitchord macro does the actual work of typesetting chord text over lyric
text, introducing appropriate hyphenation when necessary. We begin by consulting
\SB@next, which should have been set by the lyric-scanning code in §I5.10] to the
token that immediately follows the lyric under this chord, to determine whether
the lyric text ends on a word boundary.

2521 \newcommand\SB@emitchord{’

2522 \ifSB@inverse\else\ifSB@inchorus\else\SB@errchord\fi\fi%

2523 \SB@testfalse},

2524 \ifcat\noexpand\SB@next\@sptoken\SB@testtrue\fi},

129

2525 \ifcat\noexpand\SB@next.\SBQtesttrue\fiy,

2526 \1fx\SB@next\SB@par\SB@testtrue\fi},

2527 \ifx\SB@next\egroup\SBQtesttrue\fiy,

2528 \ifx\SB@next\endgroup\SBOtesttrue\fiy

2529 {\csname}

2530 SB@HT@\ifx\SBOnextname\relax\meaning\SB@next\else\SBGnextname\fi},
2531 \endcsname}%

2532 \ifSB@test\SB@wordendstrue\else\SB@wordendsfalse\fi%

Next, compare the width of the lyric to the width of the chord to determine whether
hyphenation might be necessary. The original lyric text might have ended in a
string of one or more explicit hyphens, enumerated by \SB@numhyps. If it ended
in exactly one, the lyric-scanning code suppresses that hyphen so that we can here
add a new hyphen that floats out away from the word when the chord above it is
long. If it ended in more than one (e.g., the encoding of an en- or em-dash) then
the lyric-scanner leaves it alone; we must not add any hyphenation or float the
dash away from the word.

There is also code here to insert a penalty that discourages linebreaking
immediately before lyricless chords. Beginning a wrapped line with a lyricless
chord is undesirable because it makes it look as though the wrapped line is extra-
indented (due to the empty lyric space below the chord). It should therefore

happen only as a last resort.

2533 \SB@dimen\wd\SB@chordbox’

2534 \ifvmode\leavevmode\fi%

2535 \SB@brokenwordfalseY,

2536 \ifdim\wd\SB@lyricbox>\z@J

2537 \ifdim\SB@dimen>\wd\SB@lyricbox
2538 \ifSB@wordends\else\SB@brokenwordtrue\fi
2539 \fil

2540 \else,

2541 \SB@skip\lastskip%

2542 \unskip\penalty200\hskip\SB@skip/
2543 \fil

2544 \ifnum\SBOnumhyps>\z@Y

2545 \ifnum\SB@numhyps>\@ne,

2546 \SB@brokenwordfalse},

2547 \else%

2548 \SB@brokenwordtrue’,

2549 \fi%

2550 \fi%

If lyrics are suppressed on this line (e.g., by using \nolyrics), then just typeset
the chord text on the natural baseline.

2551 \SB@testfalse},

2552 \ifnolyrics\ifdim\wd\SB@lyricbox=\z@\SB@testtrue\fi\fi},
2553 \ifSB@test%

2554 \unhbox\SB@chordbox

2555 \gdef\SB@temp{\expandafter\SB@clearlig\SB@ligfull}’,
2556 \elsel

130

Otherwise, typeset the chord above the lyric on a double-height line.

2557 \vbox{\clineparams\relax,

2558 \ifSB@brokenword’

2559 \global\setbox\SB@lyricbox\hbox{}

2560 \unhbox\SB@lyricbox

2561 \SB@ligpre

2562 Yh

2563 \SBOmaxmin\SB@dimen<{\wd\SB@lyricbox}%

2564 \advance\SB@dimen. 5em},

2565 \hbox to\SB@dimen{\unhbox\SBA@chordbox\hfil}y,

2566 \hbox to\SB@dimen{}

2567 \unhcopy\SB@lyricbox\hfil

2568 \ifnum\hyphenchar\font>\m@ne\char\hyphenchar\font\hfil\fij,
2569 Yh

2570 \global\SB@cnt\@m/

2571 \gdef\SB@temp{\expandafter\SBeclearlig\SB@ligpost}’
2572 \else/,

2573 \box\SB@chordbox

2574 \hbox{%

2575 \unhcopy\SB@lyricbox%

2576 \global\SB@cnt\spacefactory

2577 \hfil}

2578 Yh

2579 \gdef\SB@temp{\expandafter\SB@clearlig\SB@ligfulll}y
2580 \fi%

2581 Yh

If the chord is lyricless, inhibit a linebreak immediately following it. This prevents
sequences of lyricless chords (which often end lines) from being wrapped in the
middle, which looks very unsightly and makes them difficult to read. If the chord
has a lyric but it doesn’t end on a word boundary, insert an appropriate penalty
to prevent linebreaking without hyphenation. Also preserve the spacefactor in this
case, which allows IXTEX to fine-tune the spacing between consecutive characters

in the word that contains the chord.

2582 \ifSB@wordends},

2583 \ifdim\wd\SB@lyricbox>\z@\else\nobreak\fi},
2584 \else%

2585 \penalty

2586 \ifnum\SB@numhyps>\z@\exhyphenpenalty
2587 \else\ifSB@brokenword\hyphenpenalty’
2588 \else\@M\fi\fi%

2589 \spacefactor\SB@cnt

2590 \fi%

2501 \fi%

Finally, end the macro with some code that handles the special case that this
chord is immediately followed by a chord-over-ligature macro. The code above
sets \SB@temp to the portion of the ligature that should come after this chord but
before the chord that tops the ligature. This text must be inserted here.

131

2592 \SB@temp,
2593 }

\SBeaccidental Typeset an accidental symbol as a superscript within a chord. Since chord names
are often in italics but math symbols like sharp and flat are not, we need to do
some kerning adjustments before and after the accidental to position it as if it
were italicized. The pre-adjustment is just a simple italic correction using \/. The
post-adjustment is based on the current font’s slant-per-point metric.

2594 \newcommand\SB@accidental [1]{{
2595 \/%

2596 \m@th#17

2597 \SB@dimen-\fontdimen\@ne\font?}
2598 \advance\SB@dimen.088142\p@%
2599 \ifdim\SB@dimen<\z@%

2600 \kern\f@size\SB@dimen},
2601 \fi%
2602 }}

\sharpsymbol When changing the sharp or flat symbol, change these macros rather than changing
\flatsymbol \shrp or \flt. This will ensure that other shortcuts like # and & will reflect your
change.

2603 \newcommand\sharpsymbol{\ensuremath{~\#}}
2604 \newcommand\flatsymbol{\raise.5ex\hbox{{\SB@flatsize\flat}}}

\shrp These macros typeset sharp and flat symbols.

\f1t2605 \newcommand\shrp{\SBeaccidental\sharpsymbol}
2606 \newcommand\flt{\SBQaccidental\flatsymbol}

\DeclareFlatSize The \flat math symbol is too small for properly typesetting chord names. (Its
size was designed for staff notation not textual chord names.) The correct size for
the symbol should be approximately 30% larger than the current superscript size,
or 90% of the base font size b. However, simply computing 0.95 does not work well
because most fonts do not render well in arbitrary sizes. To solve the problem,
we must therefore choose an appropriate size individually for each possible base
font size b. This is the solution adopted by the rest of ITEX for such things. For
example, IATEX’s \DeclareMathSizes macro defines an appropriate superscript
size for each possible base font size. The macro below creates a similar macro that
that defines an appropriate flat-symbol size for each possible base font size.

2607 \newcommand\DeclareFlatSize[2]{/

2608 \expandafter\xdef\csname SB@flatsize@#1\endcsname{#2}},
2609 }

2610 \DeclareFlatSize\@vpt\Qvpt

2611 \DeclareFlatSize\@vipt\@vipt

2612 \DeclareFlatSize\@viipt\@vipt

2613 \DeclareFlatSize\@viiipt\@viipt

2614 \DeclareFlatSize\@ixpt\Q@viiipt

2615 \DeclareFlatSize\@xpt\Q@ixpt

2616 \DeclareFlatSize\@xipt\@xpt

132

2617 \DeclareFlatSize\@xiipt\@xipt
2618 \DeclareFlatSize\@xivpt\@xiipt
2619 \DeclareFlatSize\@xviipt\@xivpt
2620 \DeclareFlatSize\@xxpt\Q@xviipt
2621 \DeclareFlatSize\@xxvpt\@xxpt

\SBeflatsize Select the correct flat symbol size based on the current font size.

2622 \newcommand\SB@flatsize{),
2623 \@ifundefined{SB@flatsize@\f@size}{}{%

2624 \expandafter\fontsizej,

2625 \csname SB@flatsize@\f@size\endcsname\f@baselineskip’
2626 \selectfont,

2627 }h

2628 }

In the following code, the \ch, \mch, \[, and ~ macros are each defined to
be a single macro that then expands to the real definition. This is necessary
because the top-level definitions of each must stay the same in order to allow the
lyric-scanning code to uniquely identify them, yet their internal definitions must
be redefined by code that turns chords and/or measure bars on and off. Such code
redefines \SB@ch, \SB@mch, \SB@bracket, and \SB@rechord to effect a change of
mode without touching the top-level definitions.

\ch The \ch macro puts a chord atop a ligature without breaking the ligature. Normally
\SBech this just means placing the chord midway over the unbroken ligature (ignoring the
\SBech@on third argument completely). However, when a previous chord macro encounters it
\SBeech while scanning ahead in the input stream to parse its lyric, the \ch macro itself
\SBeeech is not actually expanded at all. Instead, the chord macro scans ahead, spots the
\SBech@ff \ch macro, gobbles it, and then steals its arguments, breaking the ligature with
hyphenation. Thus, the \ch macro is only actually expanded when the ligature
shouldn’t be broken.
2629 \newcommand\ch{\SB@ch}
2630 \newcommand\SB@ch{}
2631 \newcommand\SB@ch@on{\SBO@begincname\SB@Ach}
2632 \newcommand*\SB@@ch [1] {\SB@endcname\SB@@@ch{#1}}
2633 \newcommand+*\SB@@@ch [4] {\ [\SB@noreplay{\hphantom{#2}}#1]#4}
2634 \newcommand*\SB@ch@off [4] {#4}

\mch The \mch macro is like \ch except that it also introduces a measure bar.

\SB@mchyg35 \newcommand\mch{\SB@mch}
\SB@mch@m2636 \newcommand\SB@mch{}
\SB@mch@on2637 \newcommand*\SBO@mch@m [4] {#2\measurebar#3}
\SB@Omch2638 \newcommand\SBemch@on{\SB@begincname\SB@@mch}
\SB@@@mch2639 \newcommand*\SB@emch [1] {\SB@endcname\SBe@@Cmch{#1}}
2640 \newcommand*\SBQ@@@mch [4] {#2\measurebar\ [#1]#3}

133

\SB@activehat This macro must always contain the current definition of the ~ chord-replay active
character, in order for the lyric scanner to properly identify it and insert proper
hyphenation when necessary.

2641 \newcommand\SB@activehat{%
2642 \ifmmode~\else\expandafter\SB@rechord\fi%
2643 }

\SBGhat@tr In verses/choruses where chords are being memorized, \SB@activehat gets set to
this definition, which marks the current chord as immune to memorization.
2644 \newcommand\SB@hat@tr{/,
2645 \ifmmode~\else\global\SB@nohatfalse\fi}
2646 }

\SBe@hat@notr In verses/choruses where chords are being replayed, \SB@activehat get set to the
following, which replays the next memorized chord and subjects it to any required
transposition and/or note conversion.

2647 \newcommand\SB@hat@notr{}

2648 \ifmmode~\else,
2649 \SB@lop\SB@ctail\SB@toks%

2650 \expandafter\transposehere\expandafter{\the\SBOtoks}/
2651 \fi},
2652 }

\SB@loadactives It’s cumbersome to have to type \shrp, \flt, and \mbar every time you want a
sharp, flat, or measure bar, so within verses and choruses we allow the hash, amper-
sand, and pipe symbols to perform the those functions too. It’s also cumbersome
to have to type something like \chord{Am}{1lyric} to produce each chord. As an
easier alternative, we here define \ [Am] to typeset chords.

2653 \newcommand\SB@loadactives{}
2654 {

2655 \catcode‘&\active

2656 \catcode ‘#\active

2657 \catcode‘|\active

2658 \catcode‘"\active

2659 \globalllet&\flt

2660 \global\let#\shrp

2661 \global\let|\measurebar
2662 \global\let~\SB@activehat
2663 \gdef\SB@loadactives{/,

2664 \catcode‘~\ifchorded\active\else9 \fi},
2665 \catcode‘|\ifmeasures\active\else9 \fi%
2666 \def\ [{\SB@bracket}/,

2667)

2668 }

134

15.12 Chord Replaying

\SBetrackch While inside a verse where the chord history is being remembered for future verses,
\SB@trackch is true.

2669 \newif\ifSB@trackch

\SBecr@ Reserve token registers to record a history of the chords seen in a verse.

2670 \SB@newtoks\SB@cr@
2671 \SB@newtoks\SB@ctail

\SBecreg The following control sequence equals the token register being memorized into or
replayed from.

2672 \newcommand\SB@creg{}

\newchords Allocate a new chord-replay register to hold memorized chords.

2673 \newcommand\newchords [1]{%
2674 \@ifundefined{SB@cre#1}{%

2675 \expandafter\SB@newtoks\csname SBQcr@#1\endcsname,
2676 \global\csname SBQcr@#1\endcsname{\\}/

2677 }{\SB@errdup{#13}3}%

2678 }

\memorize Saying \memorize throws out any previously memorized list of chords and starts
\SB@memorize memorizing chords until the end of the current verse or chorus.

2679 \newcommand\memorize{%

2680 \@ifnextchar [\SB@memorize{\SB@memorize[]}}
2681 }

2682 \newcommand\SB@memorize{}

2683 \def\SB@memorize [#1]{%

2684 \@ifundefined{SB@cr@#1}{\SBQerrreg{#1}}{J

2685 \SB@trackchtrue},

2686 \global\expandafter\let\expandafter\SBQcreg
2687 \csname SB@cr@#1\endcsname},

2688 \global\SB@creg{\\}%

2689 }%

2690 }

\replay Saying \replay stops any memorization and begins replaying memorized chords.

\SB@replaysp91 \newcommand\replay{\@ifnextchar [\SBereplay\SB@Creplay}
\SB@Creplay2692 \newcommand\SB@replay{}
2693 \def\SB@replay [#1]{Y
2694 \@ifundefined{SB@cr@#1}{\SBCerrreg{#1}}{/%

2695 \SB@trackchfalse’,

2696 \global\expandafter\let\expandafter\SBQcregy
2697 \csname SBQcr@#1\endcsname},

2698 \global\SB@ctail\SB@cregi

2699 }%

2700 }

2701 \newcommand\SB@@replay{’

135

2702 \SB@trackchfalsel,
2703 \global\SB@ctail\SB@creg/,
2704 }

\SBerechord Replay the same chord that was in a previous verse.

\SB@@rechordaros \newcommand\SBerechord{}
2706 \newcommand\SB@@rechord{’
2707 \SB@ifempty\SB@ctail{’,

2708 \SB@errreplay’

2709 \SBetoks{}%

2710 \let\SB@donext\@gobble,

2711 M

2712 \SB@lop\SB@ctail\SB@toks%

2713 \1let\SB@donext\SB@chordy,

2714 \let\SB@noreplay\@gobble’

2715 }h

2716 \expandafter\SB@donext\the\SB@toks]Y
2717 }

\ifSBenohat The \ifSB@nohat conditional is set to false when a chord macro contains a ~ in its
argument. This suppresses the recording mechanism momentarily so that replays
will skip this chord.

2718 \newif\ifSB@nohat

\SB@noreplay Sometimes material must be added to a chord but omitted when the chord is
replayed. We accomplish this by enclosing such material in \SB@noreplay macros,
which are set to \@gobble just before a replay and reset to \@firstofone at other
times.

2719 \newcommand\SB@noreplay{}
2720 \let\SB@noreplay\@firstofone

15.13 Guitar Tablatures

The song book software not only supports chord names alone, but can also typeset
guitar tablature diagrams. The macros for producing these diagrams are found here.

\SBefretwidth Set the width of each vertical string in the tablature diagram.

2721 \newlength\SB@fretwidth
2722 \setlength\SBefretwidth{6\pe}

\SBefretnum Typeset a fret number to appear to the left of the diagram.

2723 \newcommand\SB@fretnum[1]{{%
2724 \sffamily\fontsize\@xpt\@xpt\selectfont#1%
2725 }}

136

\SBeonfret Typeset one string of one fret with (arg!) typeset overtop of it (usually a dot or
nothing at all).
2726 \newcommand\SB@onfret [1]{}
2727 \kern.5\SB@fretwidth\kern-.2\p@%
2728 \vrule\@height6\p@Y
2729 \kern-.2\p@\kern-.5\SB@fretwidth,
2730 \hbox to\SB@fretwidth{\hfil#1\hfil}%
2731 }

\SBeatopfret Typeset material (given by (argl)) to be placed above a string in the tablature
diagram.
2732 \newcommand\SBQ@atopfret [1]{/
2733 \hbox to\SB@fretwidth{\hfil#1\hfill}}
2734 }

\SBefretbar Typeset a horizontal fret bar of width \SB@dimen.

2735 \newcommand\SB@fretbar{/
2736 \nointerlineskip’%
2737 \hbox to\SB@dimen{%

2738 \advance\SB@dimen-\SB@fretwidth,

2739 \advance\SB@dimen.4\p@/

2740 \hfil%

2741 \vrule\@width\SB@dimen\Gheight .4\p@\Q@depth\zQY
2742 \hfil%

2743 }%

2744 \nointerlineskip%

2745 }

\SB@topempty Above a string in a tablature diagram there can be nothing, an X, or an o.

\SB@topXa746 \newcommand\SB@topempty{\SB@atopfret\relax}
\SB@top02747 \newcommand\SB@topX{\SBQatopfret{%

2748 \hbox{%

2749 \kern-.2\p@%

2750 \fontencoding{OMS}\fontfamily{cmsy}’

2751 \fontseries{m}\fontshape{n}’

2752 \fontsize\@viipt\@viipt\selectfont\char\tw}
2753 \kern-.2\p@/

2754}

2755 }}

2756 \newcommand\SB@topO0{\SB@atopfret{%
2757 \vrule\@width\z@\@height4.3333\p@\@depth.8333\p@/,
2758 \lower.74\p@\hbox{Y%

2759 \fontencoding{OMS}\fontfamily{cmsy}’
2760 \fontseries{m}\fontshape{n}’

2761 \fontsize\@xpt\@xpt\selectfont\chari4y,
2762 }h

2763 }}

137

\SB@doify Define the macro given in the first argument to equal the fully expanded content
\SBeedoify of the second argument, but with \SB@do inserted before each token or group.

\SB@do2764 \newcommand\SB@do [1]{}
2765 \newcommand\SB@doify [2]{%
2766 \SB@toks{}’
2767 \edef#1{#2}},
2768 \expandafter\SBQ@@doify#1\SB@@doifyY
2769 \edef#1{\the\SB@toks}/
2770 }
2771 \newcommand\SB@@doify [11{%
2772 \ifx#1\SB@Q@doify\else,

2773 \SB@toks\expandafter{\the\SBOtoks\SBedo{#1}}%
2774 \expandafter\SB@@doify?,

2775 \fi%

2776 }

\SB@allbarres Reserve a control sequence to remember all the stacks, start control sequences, and
\SB@dobarre end control sequences associated with barre delimiter pairs; and a control sequence
to perform an arbitrary action on them.
2777 \newcommand\SB@allbarres{}
2778 \newcommand\SB@dobarre{}

\SB@barreI As we process strings in order, barres in progress can be in one of three states: initial
\SB@barreN (\SB@barrel), deactivated (\SB@barreN), or tentatively activated (\SB@barreY).

\SB@barreY3779 \newcommand\SB@barreI{\noexpand\SBebarreI}
2780 \newcommand\SB@barreN{\noexpand\SB@barreN}
2781 \newcommand\SB@barreY{\noexpand\SB@barreY}

\SB@lowfret If we see a lower numbered fret than the current fret within a barre, deactivate
\SBeelowfret the barre. (It has already been shown on an earlier fret.)

2782 \newcommand\SB@lowfret{/,

2783 \let\SB@dobarre\SB@Q@lowfret\SB@allbarres},
2784 \SB@fretempty’%

2785 }

2786 \newcommand\SB@@lowfret [3]1{{%

2787 \let\SB@barreI\SB@barreNY,

2788 \let\SB@barreY\SB@barreN,

2789 \xdef#1{#11}/,

2790 }}

\SB@bactivate If we see the current fret within a barre, tentatively activate the barre (unless it is
already deactivated).
2791 \newcommand\SB@bactivate [3]{{/
2792 \let\SB@barreI\SB@barreYy,
2793 \xdef#1{#1}Y,
2794 }}

138

\SB@bbarre Starting a barre group pushes it onto its stack in the initial state.

2795 \newcommand\SB@bbarre [1]{%
2796 \xdef#1{\SB@barreI{\the\SB@cntiil}#1}%
2797 }

\SBeebarre Ending a barre group pops it and draws it if it’s active.

\SB@@ebarrey7gs \newcommand\SBCebarre [3]{%
\SB@CCebarrez799 \ifx#1\Qempty%

2800 \ifnum\SB@cnt=\@ne\SB@errebar#2#3\fiJ
2801 \elsel,

2802 \expandafter\SB@@ebarre#1\SB@Qebarre#17
2803 \fi%

2804 }

2805 \newcommand\SB@@ebarre{}

2806 \def\SB@@ebarre#1#2#3\SB@@ebarre#4{{%
2807 \gdef#4{#3}%

2808 \let\SB@barreI\@gobble,

2809 \let\SB@barreN\@gobble,

2810 \let\SB@barreY\SB@barre},

2811 #1{#2}V

2812 }}

\SB@barreson Turn barre delimiters on or off, depending on whether we're typesetting the interior
\SB@barresoff or upper part of the tablature diagram.

2813 \newcommand\SB@barreson[3]{%

2814 \def#2{\SB@bbarre#11}}

2815 \def#3{\SB@ebarre#1#2#3}/,

2816 }

2817 \newcommand\SB@barresoff [3]{\let#2\relax\let#3\relax}

\SBefretempty On a string in a fret diagram there can be nothing or a filled circle.

\SBOfretdotagis \newcommand\SBefretempty{%

\SB@@fretdotag1g \advance\SB@cntii\@ne¥,
2820 \SB@onfret\relax},
2821 }
2822 \newcommand\SB@fretdot{/,
2823 \advance\SB@cntii\@ne,
2824 \let\SB@dobarre\SB@bactivate\SB@allbarres},
2825 \SB@@fretdot’,
2826 }
2827 \newcommand\SB@@fretdot{’
2828 \SB@onfret{/

2829 \fontencoding{0OMS}\fontfamily{cmsyl}%

2830 \fontseries{m}\fontshape{n}’

2831 \fontsize\@xiipt\@xiipt\selectfont\charibj
2832 }%

2833 }

139

\SB@barre Draw a barre.
2834 \newcommand\SB@barre [1]{{%

2835
2836
2837
2838
2839
2840
2841
2842
2843
2844

2845 }}

\SB@dimen\SB@fretwidth},

\multiply\SB@dimen\SB@cntii%
\advance\SB@dimen-#1\SB@fretwidth,

\kern-\SB@dimen},

\SB@@fretdot%

\kern-.5\SB@fretwidthy,
\advance\SB@dimen-\SB@fretwidthj,
\raise.7pt\hbox{\vrule\@height4.6\p@\@width\SB@dimen}y,
\kern-.5\SB@fretwidth,

\SB@@fretdot’

\SBefretend At the end of a barred row in a tablature diagram, we auto-finish any activated
barres that weren’t explicitly closed by the user.
2846 \newcommand\SB@fretend{{’,

2847
2848
2849
2850

2851 }}

\let\SB@barreI\@gobble,

\let\SB@barreN\@gobble,

\let\SB@barreY\SB@barre’,
\def\SB@dobarre##1##2##3{##1\gdef##1{}}\SBCallbarres,

\SBefinger If we're including fingering info in the tablature diagram, then below each string
\SBex there might be a number.
\SB@Z2852 \newcommand+*\SBeX{X}
\SB@02853 \newcommand*\SB@Z{0}
2854 \newcommand*\SB@O{0}
2855 \newcommand\SB@finger [1]{%

2856
2857
2858
2859
2860
2861
2862 }

\def\SB@temp{#1}/,

\1fx\SB@temp\SB@X\SBOtopempty\else’,

\ifx\SB@temp\SBQ@Z\SB@topempty\elses

\ifx\SB@temp\SBQ@O\SBA@topempty\else,
\SBQatopfret{\sffamily\fontsize\Qvipt\@vipt\selectfont#11}},

\£i\fi\£fi%

\ifSB@gettabind Lyrics under tablature diagrams look odd if they aren’t aligned with the leftmost
\SB@tabindent string of the diagram. To accomplish this, the following two macros record the
amount by which a lyric under this tablature diagram must be indented to position
it properly.
2863 \newif\ifSBOgettabind\SBOgettabindfalse
2864 \SBOnewdimen\SB@tabindent

\SBetargfret Reserve some macro names in which to store the three pieces of the second argument
\SB@targstr to the \gtab macro. The first is for the fret number, the second is for the (strings)
\SBetargfing info, and the last is for the (fingering) info.
2865 \newcommand\SB@targfret{}
2866 \newcommand\SB@targstr{}
2867 \newcommand\SB@targfing{}

140

In general \gtab macros often appear inside chord macros, which means that
their arguments have already been scanned by the time the \gtab macro itself
is expanded. This means that catcodes cannot be reassigned (without resorting
to e-TEX).

We therefore adopt the alternative strategy of converting each token in the
(strings) and (fingering) arguments of a \gtab macro into a control sequence (using
\csname). We can then temporarily assign meanings to those control sequences
and replay the arguments to achieve various effects.

\SBegtinit Different meanings are assigned to digits, X’s, and 0’s as we typeset each row of the
\SBegtinc interior of the diagram. These meanings are set by \SB@gtinit and \SB@gtinc.

2868 \newcommand\SB@gtinit{%

2869 \def\SB@do##1{\csname##1\endcsnamely,

2870 \let\0\0%

2871 \let\3\2\1let\4\2\1let\5\2\1let\6\2}

2872 \let\7\2\let\8\2\1let\9\2%

2873 }

2874 \newcommand\SB@gtinc{%

2875 \advance\SB@cnt\@neY,

2876 \1et\9\8\1let\8\7\1let\7\6\1let\6\5\1let\5\4}
2877 \let\4\3\1let\3\2\1let\2\1\let\1\SB@lowfret,
2878 }

\BarreDelims Fach pair of barre delimiters reserves a stack and augments the initialization state
\SB@bdelims to recognize those delimiters.

2879 \newcommand\BarreDelims [2]{/,

2880 \expandafter\SB@bdelims\csname SB@bs@#1#2\expandafter\endcsname,
2881 \csname#1\expandafter\endcsname\csname#2\endcsname’,

2882 }

2883 \newcommand\SB@bdelims [3]{%

2884 \newcommand*#1{}%

2885 \SB@app\def\SB@allbarres{\SB@dobarre#1#2#3},

2886 }

2887 \BarreDelims ()

2888 \BarreDelims[]

\gtab A \gtab macro begins by setting catcodes suitable for parsing a chord name as
\SBegtab its first argument. This allows tokens like # and & to be used for sharp and flat
even when \gtab is used outside a chord macro. Colon is reset to a non-active
character while processing the second argument to avoid a potential conflict with
Babel French.
2889 \newcommand\gtab{\SB@begincname\SBOgtab}
2890 \newcommand*\SB@gtab[1]{}
2891 \SB@endcname},
2892 \begingroup/

2893 \catcode‘:12\relax}
2894 \SBeegtab{#11}/
2895 }

141

\SBeegtab If transposition is currently taking place, allow the user to customize the behavior
by redefining \gtabtrans. Using \gtab within \gtabtrans should go directly to
\SB@@@gtab (otherwise an infinite loop would result!).

2896 \newcommand*\SB@@gtab [2]{/

2897 \endgroup’

2898 \ifnum\SB@transposefactor=\z@}
2899 \SB@@@gtab{#1}{#2}/

2900 \elsel

2901 \begingroup’,

2902 \let\gtab\SBQQCgtabl
2903 \gtabtrans{#1}{#2}/
2904 \endgroup

2905 \fi%

2906 }

\gtabtrans By default, transposed guitar tablatures just display the transposed chord name
and omit the diagram. Transposing a tablature diagram requires manual judgment
calls for most stringed instruments, so we can’t do it automatically.

2907 \newcommand\gtabtrans [2] {\transposehere{#1}}

\sBeeegtab Typeset a full tablature diagram. Text (arg!) is a chord name placed above the
diagram. Text (arg2) consists of a colon-separated list of: (1) an optional fret
number placed to the left of the diagram; (2) a sequence of tokens, each of which
can be X (to place an x above the string), 0 or 0 (to place an o above the string),
or one of 1 through 9 (to place a filled circle on that string at the fret of the given
number); and (3) an optional sequence of tokens, each of which is either 0 (no
fingering information for that string), or one of 1 through 4 (to place the given
number under that string).

2908 \newcommand\SB@@Qgtab [2]{%

2909 \let\SB@targfret\@empty’

2910 \let\SB@targstr\@empty

2011 \let\SB@targfing\@empty%

2912 \SB@tabargs#2:::\SB@tabargs/
2913 \ifx\SB@targstr\@empty’

2914 \def\SB@targstr{\0\0\0\0\0\0}/
2015 \fi},

2916 \ifvmode\leavevmode\fi%,

2917 \vbox{%

2918 \normalfont\normalsize¥

2919 \setbox\SB@box\hbox{%

2920 \thinspace{\printchord{\transposehere{#1}\strut}}\thinspace,
2921 o

2922 \setbox\SB@boxii\hbox{\SBefretnum{\SBQtargfret}}/

2923 \setbox\SB@boxiii\hbox{{%

2924 \let\X\SB@topX\1let\0\SBAtopl%

2925 \let\1\SB@topempty\let\2\1%

2926 \SB@gtinit%

2927 \let\SB@dobarre\SB@barresoff\SB@allbarres/,

142

2928
2929
2930
2031
2932
2033
2934
2935
2036
2937
2938
2939
2940
2941
2042
2043
2944
2045
2946
2047
2048
2949
2950
2051
2952
2953
2054
2055
2956
2057
2058
2959
2060
2961
2962
2063
2964
2965
2066
2067
2068
2069
2970
2971
2972
2973
2974
2975 }

\SB@tabargs Break the second argument to a \gtab macro into three sub-arguments

\SB@Qtabargs
\SB@ctoken

\SB@targstr,
3}
\hsize\wd\SB@box
\ifSBOgettabind’%
\global\SB@tabindent\wd\SB@boxiil
\global\advance\SB@tabindent.5\SBOfretwidth,
\global\advance\SB@tabindent-.5\p@%
\fi%
\SB@dimen\wd\SB@boxii%
\advance\SB@dimen\wd\SB@boxiii}
\ifdim\hsize<\SB@dimen}
\hsize\SB@dimenj,
\else\ifSBOgettabindy
\SB@dimenii\hsize}
\advance\SB@dimenii-\SB@dimen,
\divide\SB@dimenii\tw@%
\global\advance\SB@tabindent\SB@dimenii}
\fi\fi%
\hbox to\hsize{\hfil\unhbox\SB@box\hfill}},
\kern-\p@\nointerlineskip¥
\hbox to\hsize{%
\hfil},
\vtop{\kern\p@\kern2\p@\box\SB@boxii}%
\vtop{%
\SB@dimen\wd\SB@boxiii%
\box\SB@boxiii%
\let\X\SB@fretempty\let\0\X/
\let\1\SB@fretdot\def\2{\SBefretempty\global\SBA@testtruely,
\SB@gtinitY
\let\SB@dobarre\SB@barreson\SBQallbarres},
\SB@cnt\@ne%
\loop%
\SB@testfalse,
\SB@fretbar\hbox{\SBecntii\z@\SBQ@targstr\SBefretend}/
\ifnum\SB@cnt<\minfrets\SB@testtrue\fi},
\ifSB@test\SBOgtinc\repeat/,
\SBefretbar’
\ifx\SB@targsfing\Q@empty\else
\kernl.5\p@}
\hbox{\1let\SB@do\SB@finger\SB@targfing}/
\fi%
Yh
\hfil%
Yh
\kern3\p@%,

\SB@gettabindfalse,

143

The

\songchapter

possible forms are: (a) (strings), (b) (fret): (strings), (c) (strings):(fingering), or
(d) (fret):(strings): (fingering). To distinguish forms (b) and (c), we count the
number of tokens before the first colon. If there is only one token or group, we
assume it must be form (b), since frets larger than 9 and 1-stringed instruments
are both rare. Otherwise we assume form (c).

2976 \newcommand\SB@ctoken{} \def\SB@ctoken{:}
2977 \newcommand\SB@tabargs{}

2978 \def\SB@tabargs#1:#2:#3:#4\SB@tabargs{/
2979 \def\SB@temp{#41}/,

2080 \ifx\SB@temp\Qempty%

2081 \SB@doify\SB@targstr{#1}%

2982 \else\ifx\SB@temp\SB@ctoken,

2983 \SB@Q@tabargs#1\SB@Qtabargs,

2984 \ifx\SB@temp\Q@empty?

2985 \def\SB@targfret{#11}

2986 \SB@doify\SB@targstr{#2}/
2987 \else%

2988 \SB@doify\SB@targfing{#2}%
2989 \SB@doify\SB@targstr{#1}/
2090 \fi%

2991 \else}
2992 \def\SB@targfret{#1}/
2993 \SB@doify\SB@targfing{#31}/

2994 \SB@doify\SBQ@targstr{#2}%
2995 \fi\fi%
2996 }

2997 \newcommand\SB@@tabargs{}
2998 \def\SB@@tabargs#1#2\SB@@tabargs{\def\SBOtemp{#2}}

15.14 Book Sectioning

The following macros divide the song book into distinct sections, each with different
headers, different song numbering styles, different indexes, etc.

Format the chapter header for a chapter in a song book. By default, chapter
headers on a song book omit the chapter number, but do include an entry in
the pdf index or table of contents. Thus, the chapter has a number; it’s just not
displayed at the start of the chapter.

2999 \newcommand\songchapter{/,

3000 \let\SB@temp\@seccntformaty

3001 \def\@seccntformat##1{}%

3002 \@startsection{chapter}{0}{\z@}%

3003 {3.5ex\@pluslex\@minus.2ex}’,

3004 {.4ex\let\@seccntformat\SBOtemp}s

3005 {\sffamily\bfseries\LARGE\centeringl}/,
3006 }

144

\songsection Format the section header for a section in a song book. This is the same as for

songs

chapter headers except at the section level.

3007 \newcommand\songsection{}

3008 \let\SB@temp\@seccntformaty

3009 \def\@seccntformat##1{}/

3010 \@startsection{section}{1}{\z@}%

3011 {3.5ex\@plusiex\@minus.2ex}%

3012 {.4ex\let\@seccntformat\SBOtemp}s

3013 {\sffamily\bfseries\LARGE\centering}y
3014 }

Begin and end a book section. The argument is a list of indexes with which to
associate songs in this section.
3015 \newenvironment{songs} [1]1{/
3016 \ifSB@songsenv\SBQerrnse\fij
3017 \gdef\SB@indexlist{#1}},
3018 \SB@chkidxlst¥
3019 \stepcounter{SB@songsnum}’
3020 \setcounter{songnum}{1}%
3021 \let\SB@sgroup\Q@empty’
3022 \ifinner\else\ifdim\pagetotal>\z@%
3023 \null\nointerlineskip’,
3024 \fi\fi%
3025 \songcolumns\SB@numcols?
3026 \SB@songsenvtruey,
3027 H%
3028 \commitsongs
3029 \globall\let\SB@indexlist\@empty¥
3030 \ifinner\else\clearpage\fi/,
3031 \SB@songsenvfalse,
3032 }

Each songs section needs a unique number to aid in hyperlinking.

3033 \newcounter{SB@songsnum}

15.15 Index Generation

The following macros generate the various types of indexes. At present there
are four types:

1. A “large” index has a separate section for each capital letter and is printed
in two columns.

2. A “small” index has only a single column, centered, and has no sections.

3. A “scripture” index has three columns and each entry has a comma-separated
list of references.

4. An “author” index is like a large index except in bold and without the
sectioning.

145

\songtarget

“Large” and “small” indexes will be chosen automatically based on the number
of index entries when building a song index. The other two types are designated
by the user.

As is typical of IXTEX indexes, generation of song book indexes requires two
passes of document compilation. During the first pass, data files are generated
with song titles, authors, and scripture references. An external program is then
used to produce BTEX source files from those data files. During the second pass of
document compilation, those source files are imported to typeset all the indexes
and display them in the document.

Internally, this package code uses a four step process to move the index data
from the source .tex file to the .sxd data files.

1. While the current song box is in the midst of construction, the data is stored
in a box of non-immediate write whatsit nodes.

2. The whatsits are migrated out to the top of the song box when it is finalized
at \endsong.

3. When the song box is shipped out to the output file, TEX expands the
whatsits, causing the data to be written to the .sxc auxiliary file.

4. At the \end{document} line, the .sxc is processed multiple times—once for
each index—to split the data into the respective .sxd files.

The first and second steps allow index references to point to the beginning of the
song no matter where the indexing commands appear within the song. The third
step allows TEX to drop index entries that refer to songs that do not actually
appear in the output (e.g., because of \includeonlysongs). It also allows index
entries to refer to information that is only decided at shipout time, such as page
numbers. The fourth step allows all indexing to be accomplished with at most one
write register. ITEX provides extremely few write registers, so using as few as
possible is essential for supporting books with many indexes.

This macro is invoked by each environment with two arguments: (1)
a suggested pdf bookmark index level, and (2) a target name to which hyperlinks
for this song in the index will refer. The macro is expected to produce a suit-
able pdf bookmark entry and/or link target. The default definition tries to use
\pdfbookmark if generating a PDF, and resorts to \hypertarget (if it exists) oth-
erwise. The user can redefine the macro to customize how and whether bookmarks
and/or links are created.

3034 \newcommand\songtarget [2]{

3035 \ifnum\@ne=0\ifSB@pdf\ifx\pdfbookmark\undefined\elsej,

3036 \ifx\pdfbookmark\relax\elsel\fi\fi\fi\relax’

3037 \pdfbookmark [#1]{\thesongnum. \songtitle}{#21}

3038 \else\ifx\hypertarget\undefined

3039 \else\ifx\hypertarget\relax\else},

3040 \hypertarget{#2}{\relax}/

3041 \fi\fi\fi%

3042 }

146

\songlink This macro is invoked by the index code to produce a link to a song target created
by Nsongtarget| Its two arguments are: (1) the target name (same as the second
argument to [\songtarget] and (2) the text that is to be linked. The default
implementation uses \hyperlink if it exists; otherwise it just leaves the text
unlinked.

3043 \newcommand\songlink{%
3044 \ifnum\@ne=0\ifx\hyperlink\undefined\else},

3045 \ifx\hyperlink\relax\elsel\fi\fi\relax
3046 \expandafter\hyperlink

3047 \elsek

3048 \expandafter\@gobbley,

3049 \fi}

3050 }

\SB@indexlist This macro records the comma-separated list of the identifiers of indexes associated
with the current book section.

3051 \newcommand\SB@indexlist{}

\SBeallindexes This macro records a comma-separated list of all the index identifiers for the entire
document.

3052 \newcommand\SB@allindexes{}
3053 \let\SB@allindexes\Qempty

\SBeout The \SB@out control sequence is reserved for the write register allocated by the
package code, if one is needed. (It is allocated at the first index declaration.)

3054 \newcommand\SB@out{}
3055 \1let\SB@out\relax

\SB@newindex Initialize a new title, author, or scripture index.

3056 \newcommand\SB@newindex [4]{/

3057 \expandafter\newcommand\csname SBQidxfilename®@#3\endcsname{#41}/,
3058 \expandafter\newcommand\csname SBQ@idxsel@#3\endcsname [3] {###1}/,

3059 \expandafter\newcommand\csname SB@idxref@#3\endcsname{\thesongnum}y,
3060 \xdef\SB@allindexes{/

3061 \ifx\SB@allindexes\@empty\else\SB@allindexes, \fi#3Y
3062 }%

3063 \if@filesw)

3064 \ifx\SB@out\relaxy

3065 \SB@newwrite\SB@out

3066 \immediate\openout\SBQout=\jobname.sxc\relax

3067 \£fiY%

3068 \immediate\write\SB@out{\noexpand\SBQiwrite{#3}{#2}}/
3069 \fi%

3070 }

147

\newindex Define a new title index. The first argument is an identifier for the index (used
in constructing index-specific control sequence names). The second argument is
a filename root; auxiliary file (arg2).sxd is where the index data is stored at the
end of processing.

3071 \newcommand\newindex{\SB@newindex1{TITLE INDEX DATA FILE}}
3072 \@onlypreamble\newindex

\newscripindex Define a new scripture index. This is exactly like \newindex except that scripture
references are added to the auxiliary file instead of titles.

3073 \newcommand\newscripindex{\SBOnewindex2{SCRIPTURE INDEX DATA FILE}}
3074 \Qonlypreamble\newscripindex

\newauthorindex Define a new author index. This is exactly like \newindex except that author info
is added to the auxiliary file instead of titles.

3075 \newcommand\newauthorindex{\SB@newindex3{AUTHOR INDEX DATA FILE}}
3076 \@onlypreamble\newauthorindex

\SBecwrite Write index data to a Song indeX Combined (.sxc) auxiliary file. The first
argument is the identifier for the index to which the data ultimately belongs. The
second argument is the data itself. The write is non-immediate so that it is only
output if its enclosing song is ultimately shipped to the output file.

3077 \newcommand\SB@cwrite [2]{%
3078 \ifx\SB@out\relax\else’,

3079 \protected@write\SB@out\SB@keepactive{\protect\SB@iwrite{#1}{#2}1}/,
3080 \fi%
3081 }

\SB@keepactive By default, the inputenc package expands Unicode characters into macro names
when writing them to files. This behavior must be inhibited when writing to the
.sxc file, since songidx needs the original Unicode characters for sorting. To
achieve this, we temporarily redefine most active characters so that they expand
to an unexpandable string version of themselves.

3082 \newcommand\SB@keepactive{}

3083 {\catcode‘\~\active

3084 \catcode‘\.12

3085 \def\\#1#2{%

3086 \endgroup

3087 \SB@app\gdef\SBQ@keepactive{\def#1{#2}1}/
3088

3089 \def\SB@temp#1#2{/,

3090 \SB@cnt#1\relax

3091 \loop

3092 \begingroup

3093 \uccode ‘\~\SB@cnt
3094 \uccode ‘\.\SB@cnt
3095 \uppercase{\\~.}

3096 \ifnum\SB@cnt<#2\relax
3097 \advance\SB@cnt\C@ne

148

3098 \repeat

3099 }

3100 \SB@temp{1}{8}
3101 \SB@temp{11}{11}
3102 \SB@temp{14}{91}
3103 \SB@temp{93}{255}
3104 }

\SBeiwrite The line contributed by \SB@cwrite to the .sxc file is an \SB@iwrite macro that
re-outputs the data to an appropriate .sxd file.
3105 \newcommand\SB@iwrite [2]{%
3106 \def\SB@tempii{#1}}
3107 \ifx\SB@temp\SB@tempiil
3108 \SB@toks{#2}/,

3109 \immediate\write\SB@out{\the\SB@toks}/
3110 \fi%
3111 }

\SB@uncombine At the end of the document, the .sxc file can be processed multiple times to
produce all the .sxd files without resorting to multiple write registers. Each pass
activates the subset of the \SB@iwrite commands that apply to one index.

3112 \newcommand\SB@uncombine{%
3113 \ifx\SB@out\relax\else’,

3114 \immediate\closeout\SB@out

3115 \ifsongindexes,

3116 \@for\SB@temp:=\SB@allindexes\do{%

3117 \immediate\openout\SBQout=Y

3118 \csname SB@idxfilename@\SB@temp\endcsname.sxd\relaxy
3119 \begingroup\makeatletter\catcode‘\%12\relax,
3120 \input{\jobname.sxc}\endgroup¥
3121 \immediate\closeout\SB@out%

3122 Y

3123 \£fiY

3124 \fi}

3125 }

3126 \AtEndDocument{\SB@uncombine}

\SBe@songwrites The following box register stores index data until it can be migrated to the top of
the song box currently under construction.

3127 \SB@newbox\SB@songwrites

\SB@addtoindex Queue data (arg2) associated with the current song for eventual writing to the
index whose identifier is given by (arg1).
3128 \newcommand\SB@addtoindex [2]{%,

3129 \protected@edef\SBQ@tempii{#2}%
3130 \ifx\SB@tempii\@empty\else,

3131 \global\setbox\SB@songwrites\vbox{/
3132 \unvbox\SB@songwrites},
3133 \SBOcwrite{#1}{#2}/,

149

3134 \SB@cwrite{#1}{\csname SB@idxref@#1\endcsnamel},

3135 \SB@cwrite{#1}{song\theSB@songsnum-\thesongnum.
3136 \ifnum\c@section=\z@1\else2\fi}},
3137 }

3138 \fi%

3139 }

\SB@addtoindexes Add (argl) to all title indexes, (arg2) to all scripture indexes, and (arg3) to all
author indexes.

3140 \newcommand\SB@addtoindexes[3]{%
3141 \@for\SB@temp:=\SBQ@indexlist\do{’

3142 \SBQaddtoindex\SB@temp},

3143 {\csname SB@idxsel@\SB@temp\endcsname{#1}{#2}{#3}}/
3144 Y

3145 }

\SBeaddtotitles Add (argl) to all title indexes, but leave other indexes unaffected.

3146 \newcommand\SB@addtotitles[1]1{%
3147 \@for\SB@temp:=\SBQ@indexlist\do{/

3148 \csname SBQ@idxsel@\SB@temp\endcsname},
3149 {\SBeaddtoindex\SBetemp{#1}}{}{}%
3150 }%

3151

\SBechkidxlst Check the current list of indexes and flag an error if any are undefined.

3152 \newcommand\SB@chkidx1lst{%

3153 \let\SB@temp\SB@indexlist,
3154 \let\SB@indexlist\@empty?

3155 \@for\SB@tempii:=\SB@temp\do{%

3156 \@ifundefined{SBQ@idxsel@\SBOtempii}{\SB@errnoidx\SBOtempii}{%
3157 \ifx\SB@indexlist\Qempty%

3158 \SB@toks\expandafter{\SB@tempiil}y

3159 \elsel,

3160 \SB@toks\expandafter\expandafter\expandafter{y,

3161 \expandafter\SB@indexlist\expandafter,\SBOtempiil}%
3162 \fi¥%

3163 \edef\SB@indexlist{\the\SB@toksl}%

3164 Yh

3165 Y%

3166 }

\indexentry \SB@addtoindexes will be called automatically for each song in a section. However,
\SB@idxentry \indexentry may be called by the user in order to add an alternative index entry
\SBeeidxentry for the given song. Usually this is done to index the song by its first line or some
other memorable line in a chorus or verse somewhere.
3167 \newcommand\indexentry{\Q@ifnextchar [{\SB@idxentry*}{\SB@@idxentry*}}
3168 \newcommand\SB@idxentry{}
3169 \def\SB@idxentry#1 [#2]#3{{/,
3170 \def\SB@indexlist{#21}

150

3171 \SB@chkidxlst¥

3172 \SBOaddtoindexes{#1#3}{#3}{#3}%

3173 }}

3174 \newcommand\SB@Qidxentry[2]{\SBQaddtotitles{#1#2}}

\indextitleentry \indextitleentry may be used to add an alternate title for the song to the index.
(The only difference between the effects of \indexentry and \indextitleentry
is that the latter are italicized in the rendered index and the former are not.)

3175 \newcommand\indextitleentry{/
3176 \@ifnextchar [{\SB@idxentry{}}{\SB@@idxentry{}3}’%
3177 }

\indexsongsas The following macro allows the user to change how songs are indexed on the right
side of index entries. By default, the song’s number is listed.

3178 \newcommand\indexsongsas[1]{%

3179 \@ifundefined{SB@idxref@#1}%

3180 {\SB@errnoidx{#1}\@gobblel}’

3181 {\expandafter\renewcommand\csname SBQ@idxref@#1\endcsnamel},
3182 }

\SBeidxcmd The songidx index-generation script understands several different directives that
\SBeeidxcmd each dictate various aspects of how index entries are parsed, sorted, and displayed.
\authsepword Such directives should typically appear at the start of the .sxd file just after the
\authbyword header line that identifies the type of index.
\authignorewordsig3 \newcommand\SB@idxcmd [3] {¥%
\titleprefixwordsigs \ifx\SB@allindexes\@emptyY
3185 \SB@warnnoidx
3186 \else\ifx\SB@out\relax\else,
3187 \@for\SB@temp:=\SB@allindexes\do{/%

3188 \csname SBQidxsel@\SB@temp\endcsname?,

3189 {\SB@@idxcmd{#1}}{\SB@@idxcmd{#2}}{\SB@Qidxcmd{#3}},
3190 Y%

3191 \fi\fij

3192 }

3193 \newcommand\SB@@idxcmd [1]1{%
3194 \def\SB@tempii{#1}%
3195 \ifx\SB@tempii\@empty\else’

3196 \immediate\write\SB@out{}

3197 \noexpand\SB@iwrite{\SBO@temp}{#1}/,
3198 jyA

3199 \fi},

3200 }

3201 \newcommand\authsepword [1]{}

3202 \newcommand\authbyword[1]{}

3203 \newcommand\authignoreword [1]{}

3204 \newcommand\titleprefixword[1]{}

3205 {\catcode‘\%=12

3206 \gdef\authsepword#1{\SB@idxcmd{}{}{/sep #1}}
3207 \gdef\authbyword#1{\SB@idxcmd{}{}{%after #1}}

151

3208 \gdef\authignoreword#1{\SB@idxcmd{}{}{/ignore #1}}
3209 \gdef\titleprefixword#1{\SB@idxcmd{/prefix #1}{}{}}}
3210 \@onlypreamble\authsepword

3211 \Q@onlypreamble\authbyword

3212 \@onlypreamble\authignoreword

3213 \Q@onlypreamble\titleprefixword

\SB@idxlineskip Set the spacing between lines in an index.

\SB@ellipspread

\SB@balancerows

3214 \newcommand\SB@idxlineskip[1]{/

3215

3216 }

\vskip#1\p@\@plus#1\p@\@minus#1\p@Y,

When rendering an index entry X ...Y that is too long to fit on one physical
line, we must break text X and/or Y up into multiple lines. Text X should be
typeset as a left-justified paragraph with a right margin of about 2em; however, its
final line must not be so long that it cannot fit even the first item of list Y. Text Y
should be typeset as a right-justified paragraph whose first line begins on the last
line of X. However, breaking Y up the way paragraphs are normally broken up
doesn’t work well because that causes most of Y to be crammed into the first few
lines, leaving the last line very short. This looks strange and is hard to read. It
looks much better to instead break Y up in such a way that the portion of Y that
is placed on each line is of approximately equal width (subject to the constraint
that we don’t want to introduce any more lines than are necessary). This makes
it visually clear that all of these lines are associated with X. The following code
performs the width computations that do this horizontal-balancing of text.

Typeset an index entry of the form X ...Y. In the common case, the entire entry
fits on one line so we just typeset it in the usual way. If it doesn’t fit on one line,
we call \SB@balancerows for a more sophisticated treatment.

3217 \newcommand\SB@ellipspread [2]{/

3218 \begingroup/
3219 \SB@dimen\z@,
3220 \def\SBCtemp{#11}Y
3221 \SB@toks{#2}%
3222 \setbox\SB@box\hbox{{%
3223 \SB@temp?,
3224 \leaders\hbox to.5em{\hss.\hss}\hskip2em\@plus1fily,
3225 {\the\SB@toks}}
3226 13y
3227 \ifdim\wd\SB@box>\hsize},
3228 \SB@balancerowsY
3229 \else%
3230 \hbox to\hsize{\unhbox\SB@boxl}\par
3231 \fi%
3232 \endgroup
3233 }
Typeset an index entry of the form X ...Y that doesn’t fit on one line, where X is

the content of macro \SB@temp and Y is the content of token register \SB@toks.

152

First, we must pre-compute the width w; of the final line of X when X is
typeset as a left-justified paragraph, storing it in \SB@dimenii. This is necessary
because in order to force TEX to typeset the first line of Y at some chosen width
ws, we must insert leaders of width ¢ — w; — wo into the paragraph between X
and Y, where c is the column width.

Computing this width w; is a bit tricky. We must tell TEX that the last line
of X must not be so long that it does not even have room for the first item of Y.
Thus, we must strip off the first item of Y and add it (or a non-breaking space of
equivalent width) to the end of X to typeset the paragraph. Then we use \lastbox

to pull off the final line and check its width.

3234 \newcommand\SB@balancerows{%

3235 \edef\SB@tempii{\the\SB@toksl}/,

3236 \setbox\SB@box\vbox{/

3237 \SB@toks\expandafter{\expandafter\\\the\SB@toks\\}/
3238 \SB@lop\SB@toks\SB@toks

3239 \settowidth\SB@dimen{\the\SB@toks}/

3240 \advance\SB@dimen-.5em}

3241 \leftskip.5cm%

3242 {\hbadness\@M\hfuzz\maxdimeny,

3243 \hskip-.5cm\relax\SB@temp\unskip\nobreaky,
3244 \hskip\SB@dimen\nobreak’,

3245 \rightskip2em\@plusifil\parl}y,

3246 \setbox\SB@box\lastbox

3247 \setbox\SB@box\hbox{%

3248 \unhbox\SB@box7

3249 \unskip\unskip\unpenalty%

3250 \unpenalty\unskip\unpenalty¥

3251 Yh

3252 \expandaftery,

3253

3254 \expandafter\SB@dimenii\the\wd\SB@box\relaxy,

Next, compute the smallest width ws such that the index entry text produced by
\SB@multiline with \SB@dimen=ws has no more lines than with \SB@dimen set
to the maximum available width for the right-hand side. This effectively horizontal-
balances the right-hand side of the index entry text, making all lines of Y roughly

equal in width without introducing any extra lines.

3255 \SB@dimen\hsize},

3256 \advance\SB@dimen-.5cm}

3257 \setbox\SB@box\vbox{%

3258 \SB@multiline{\hbadness\@M\hfuzz\maxdimen}Y,
3259 }%

3260 \SB@dimeniii.5\SB@dimen},

3261 \SB@dimeniv\SB@dimeniii,

3262 \loop

3263 \SB@dimeniv.5\SB@dimeniv},

3264 \setbox\SB@boxii\vbox{%

3265 \SB@dimen\SB@dimeniii,

3266 \SB@multiline{\hbadness\@M\hfuzz\maxdimen}y,

153

3267 1Y

3268 \ifnum\SB@cnt<\@M},

3269 \ifdim\ht\SB@boxii>\ht\SB@box%

3270 \advance\SB@dimeniii\SB@dimeniv},
3271 \elsel,

3272 \SB@dimen\SB@dimeniii}

3273 \advance\SB@dimeniii-\SB@dimeniv},
3274 \fi%

3275 \else%

3276 \advance\SB@dimeniii\SB@dimeniv},
3277 \fil

3278 \ifdim\SB@dimeniv>2\p@\repeaty
3279 \setbox\SB@box\box\voidb@xY
3280 \setbox\SB@boxii\box\voidb@xY
Finally, typeset the results based on the quantities computed above.

3281 \SB@multiline\relaxy
3282 }

\SBemultiline Create a paragraph containing text X ...Y where X is the content of \SB@temp,
Y is the content of \SB@tempii, and Y is restricted to width \SB@dimen (but
may span multiple lines of that width). Dimen register \SB@dimenii must be set
with the expected width of the final line of X. The first argument contains any
parameter definitions that should be in effect when X is processed.

Note that the expansion of \SB@tempii, which may contain \SB@idxitemsep,
depends on \SB@dimen. Therefore, the redefinition of \SB@dimen at the start of
this macro must not be removed!

3283 \newcommand\SB@multiline [1]{%
3284 \begingroup’

3285 \SB@dimen-\SB@dimen,

3286 \advance\SB@dimen\hsize},

3287 \SB@dimenii-\SB@dimenii%

3288 \advance\SB@dimenii\SB@dimen,

3289 {#1\hskip-.5cm\relax\SB@temp\unskip\nobreaky,
3290 \SBOmaxmin\SBO@dimenii<{1.5em}%

3291 \leftskip.5cm\rightskip2em\@plusifily,

3292 \interlinepenalty\@M/,

3293 \leaders\hbox to.5em{\hss.\hss}\hskip\SB@dimenii\@plus1filly,
3294 \nobreak{\SB@tempii\kern-2em}

3295 \par\global\SB@cnt\badness}/,

3206 \endgroup’

3297 }%

\SBe@idxitemsep If text Y in index entry X ...Y has multiple items in a list, those items should be
separated by \\ macros instead of by commas. The \\ macro will be assigned the
definition of \SB@idxitemsep during index generation, which produces the comma
along with the complex spacing required if Y ends up being broken into multiple
lines. In particular, it forces each wrapped line of Y to be right-justified with left
margin at least \SB@dimen.

154

3298 \newcommand\SBQidxitemsep{%

3299 ,\kern-2em\penalty-8\hskip2.33em\@minus.1lemy
3300 \hskip-\SB@dimen\@plus-1£illy,

3301 \vadjust{}\nobreaky

3302 \hskip\SB@dimen\@plusifill\relaxy,

3303 }

The following set of macros and environments are intended for use in the
.sbx files that are automatically generated by an index-generating program; they
shouldn’t normally appear in the user’s .tex or .sbd files directly. However, they
are named as exported macros (no @ symbols) since they are used outside the
package code and are therefore not stricly internal.

idxblock Some indexes are divided into blocks (e.g., one for each letter of the alphabet
or one for each book of the bible). Each such block should be enclosed between
\begin{idxblock}{X} and \end{idxblock} lines, where X is the title of the block.
The actual definition of the idxblock environment is set within the initialization
code for each type of index (below).

3304 \newenvironment{idxblock} [1]{}{}

\idxentry Within each idxblock environment there should be a series of \idxentry and/or
\idxaltentry \idxaltentry macros, one for each line of the index. Again, the exact definitions
of these macros will vary between index types.

3305 \newcommand\idxentry[2]{}
3306 \newcommand\idxaltentry[2]{}

SBelgidx Some indexes actually have two definitions for each idxblock environment—one

SBesmidx for use when there are few enough entries to permit a small style index, and another
for use in a large style index. These macros will be redefined appropriately within
the initialization code for each type of index.

3307 \newenvironment{SB@lgidx} [1] {}{}
3308 \newenvironment{SB@smidx} [1]{}{}

\SB@idxsetup Set various parameters for a column of an index environment.

3309 \newcommand\SB@idxsetup{%

3310 \hsize\SB@colwidth

3311 \parskip\z@skip\parfillskip\z@skip\parindent\z@%
3312 \baselineskip\f@size\p@\@plus\p@\@minus\p@Y

3313 \lineskiplimit\z@\lineskip\p@\@plus\p@\@minus\p@%
3314 \hyphenpenalty\@M\exhyphenpenalty\@M/,

3315 }

\SB@makeidxcolumn Break off enough material from \SB@box to create one column of the index.

3316 \newcommand\SB@makeidxcolumn{%
3317 \ifdim\ht\SB@box=\z0@}

3318 \hskip\hsize\relax
3319 \else),
3320 \splittopskip\z@skip\splitmaxdepth\maxdepth

155

3321 \vsplit\SB@box to\SB@dimenj,

3322 \global\setbox\SB@box\vbox{%
3323 \SB@idxsetup

3324 \splitbotmark?

3325 \unvbox\SB@box7

3326 iy

3327 \fi%

3328 }

\SBe@oneidxpage Construct one full page of the index. The definition of \SB@oneidxpage is generated
dynamically based on the type of index and number of columns.
3329 \newcommand\SB@oneidxpage{}

\SBedisplayindex Create an index with title (arg2) and with (argl) columns (must be a literal
constant). Input the index contents from external file (arg3), which is expected to
be a TEX file.

3330 \newcommand\SB@displayindex [3]{%
3331 \ifsongindexes\begingroup

3332 \SB@colwidth\hsize},

3333 \advance\SB@colwidth-#1\columnsep?,
3334 \advance\SB@colwidth\columnsepy
3335 \divide\SB@colwidth#1

3336 \setbox\SB@envbox\vbox{%

3337 \let\SB@temp\songsectiony
3338 \ifx\chapter\undefined\else/
3339 \ifx\chapter\relax\else},
3340 \let\SB@temp\songchaptery,
3341 \fif%

3342 \fi%

3343 \SBetemp{#2}%

3344 Yh

The .sbx index file might not exist (e.g., if this is the first pass through the TEX
compiler). If it exists, first try typesetting its content as a small index (one column,
centered, with no divisions).

3345 \IfFileExists{\csname SB@idxfilename®@#3\endcsname.sbx}{%
3346 \ifsepindexes/,

3347 \global\setbox\SB@box\vbox{/

3348 \nully

3349 \vfily

3350 \unvcopy\SB@envbox’

3351 \vskip.5in\@minus.3in\relax

3352 \hbox to\hsize{%

3353 \h£fil%

3354 \vbox{%

3355 \SB@idxsetup’

3356 \renewenvironment{idxblock}[1]7%

3357 {\begin{SBOsmidx}{####1}}{\end{SB@smidx}}%
3358 \let\\\SB@idxitemsep’

3359 \input{\csname SB@idxfilename@#3\endcsname.sbx}/,

156

3360 Y

3361 \hfil%

3362 Y

3363 \vskip\z@\@plus2fil\relaxy
3364 jy/A

Test whether the resulting small index fits within one page. If not, re-typeset it as
a large index.

3365 {\vbadness\@M\vfuzz\maxdimen,

3366 \splitmaxdepth\maxdepth\splittopskip\z@skip/
3367 \global\setbox\SB@boxii\vsplit\SB@box to\textheightl}/
3368 \ifvoid\SB@boxY

3369 \box\SB@boxii%

3370 \else/,

3371 \SB@lgindex{#1}{#3}Y

3372 \fif

3373 \else/,

3374 \SB@lgindex{#1}{#3}/

3375 \fi%

3376 Yh

If the .sbx file doesn’t exist, then instead typeset a page with a message on it
indicating that the document must be compiled a second time in order to generate

the index.
3377 {h
3378 \ifsepindexes’
3379 \vbox to\textheight{%
3380 \v£fily
3381 \unvbox\SB@envbox’
3382 \vskiplem\relaxy
3383 \hbox to\hsize{\hfil[Index not yet generated.]\hfill}},
3384 \vskip\z@\@plus2fil\relax,
3385 Yh
3386 \else/,
3387 \unvbox\SB@envbox
3388 \hbox to\hsize{\hfil[Index not yet generated.]\hfill}},
3389 \fi%
3390 Yh
3391 \ifsepindexes\clearpage\fi%
3392 \endgroup\fi%
3393 }

\SB@lgindex Typeset a large-style index. We begin by typesetting the entire index into a box.

3394 \newcommand\SB@lgindex [2] {7
3395 \global\setbox\SB@box\vbox{/

3396 \renewenvironment{idxblock}[1]%

3397 {\begin{SB@lgidx}{##1}}{\end{SBelgidx}}%

3398 \let\\\SB@idxitemsep/

3399 \SB@idxsetup%

3400 \input{\csname SB@idxfilename@#2\endcsname.sbx}/

157

3401 \unskip’
3402 }%

Next, we split the box into columns and pages until the last page is reached.

3403 \SB@toks{\SB@makeidxcolumn}
3404 \SB@cnt#1\relax},
3405 \loop\ifnum\SB@cnt>\@neY

3406 \SB@toks\expandafter{\the\SBOtoks}
3407 \kern\columnsep\SB@makeidxcolumn}’
3408 \advance\SB@cnt\m@ne,

3409 \repeat’

3410 \edef\SB@oneidxpage{\the\SB@toks}’
3411 \unvbox\SB@envbox},

3412 \vskip.2in\relax}

3413 \nointerlineskip’

3414 \null’

3415 \nointerlineskip}

3416 \SB@cnt\vbadness\vbadness\@M,

3417 \SB@dimenii\vfuzz\vfuzz\maxdimen,
3418 \loop%

3419 \SB@dimen\textheight

3420 \ifinner\else\kern\z@\advance\SB@dimen-\pagetotal\fi},
3421 \global\setbox\SB@boxii\copy\SBOboxY

3422 \global\setbox\SB@boxiii\hbox{\SB@oneidxpagel}’

3423 \ifdim\ht\SB@box>\z@}

3424 \box\SB@boxiii}

3425 \vfil\break,

3426 \repeat’,

The final page of the index should have all equal-height columns instead of a few
full columns followed by some short or empty columns at the end. To achieve this,
we re-typeset the final page, trying different column heights until we find one that
causes the material to span an equal percentage of all the columns on the page.

3427 \SB@dimenii\ht\SB@boxii}

3428 \divide\SB@dimenii#1\relaxy

3429 \SB@maxmin\SB@dimen>\SB@dimeniiy

3430 \loop%

3431 \global\setbox\SB@box\copy\SB@boxii%

3432 \global\setbox\SB@boxiii\hbox{\SB@oneidxpagel}%
3433 \ifdim\ht\SBE@box>\z@%

3434 \advance\SB@dimen\p@/

3435 \repeat’

3436 \box\SB@boxiii%

3437 \global\setbox\SB@boxii\box\voidb@x¥
3438 \vbadness\SB@cnt\vfuzz\SB@dimenii%
3439 }

\showindex Create an index with title (arg2) based on the data associated with index identifier
(arg3) (which was passed to \newindex). Optional argument (arg!) specifies
the number of columns. This macro calls the appropriate index-creation macro

158

depending on the type of index that (arg3) was declared to be.

3440 \newcommand\showindex [3] [0]{%
3441 \@ifundefined{SB@idxsel@#3}{\SBQerrnoidx{#3}}{%

3442 \expandafter\let\expandafter\SB@temp\csname SBQidxsel@#3\endcsname},
3443 \SB@cnt#1\relaxy

3444 \ifnum\SB@cnt<\@ne\SBAcnt\SB@temp232\relax\fi%
3445 \expandafter\SBQtemp

3446 \expandafter\SB@maketitleindexy,

3447 \expandafter\SB@makescripindex

3448 \expandafter\SB@makeauthorindex,

3449 \expandafter{\the\SB@cntl}/

3450 {#23{#3}%

3451 Y

3452 }

\SB@maketitleindex Create a song title index. (arg!) is a column count, (arg2) is the title, and (arg3)
is the index identifier (which was passed to \newindex).

3453 \newcommand\SB@maketitleindex{}
3454 \ifnum\idxheadwidth>\z@Y%

3455 \renewenvironment{SB@lgidx}[1]{

3456 \hbox{\SB@colorbox\idxbgcolor{\vbox{’

3457 \hbox to\idxheadwidth{{\idxheadfont\relax##1}\hfill}/,
3458 133y

3459 \nobreak\vskip3\p@\@plus2\p@\@minus2\p@\nointerlineskip

3460 }H\penalty-50\vskip5\p@\@plus5\p@\@minus4\p@}y
3461 \elseY

3462 \renewenvironment{SB@lgidx} [1]1{}{}%

3463 \fi},

3464 \renewenvironment{SB@smidx}[1]1{}{}%

3465 \renewcommand\idxentry[2]{%

3466 \SB@ellipspread{\idxtitlefont\relax\ignorespaces##1\unskip}/
3467 {{\idxrefsfont\relax##2}1}/,

3468 }%

3469 \renewcommand\idxaltentry[2]{%

3470 \SB@ellipspread{\idxlyricfont\relax\ignorespaces##1\unskipl}’
3471 {{\idxrefsfont\relax##2}1}/,

3472 }h

3473 \SB@displayindex

3474 }

\SB@idxcolhead In a scripture index, this macro remembers the current book of the bible we’re in
so that new columns can be headed with “Bookname (continued)”.

3475 \newcommand\SB@idxcolhead{}

\SB@idxheadsep Add vertical space following the header line that begins (or continues) a section of
a scripture index.
3476 \newcommand\SB@idxheadsep{{/
3477 \SB@dimen4\p@J,
3478 \advance\SB@dimen-\prevdepth

159

3479 \SB@maxmin\SB@dimen<\z@Y

3480 \SB@dimenii\SB@dimen},

3481 \SB@maxmin\SB@dimenii>\p@%,

3482 \vskip\SB@dimen\@plus\p@\@minus\SBQ@dimenii%
3483 }}

\SB@idxcont Typeset the “Bookname (continued)” line that continues a scripture index section
when it spans a column break.
3484 \newcommand\SB@idxcont [1]{%
3485 \hbox to\hsize{{\idxcont{#1}}\hfill}V
3486 \nobreaky,
3487 \SB@idxheadsep\nointerlineskip/
3488 }

\SB@makescripindex Create a scripture index. (argl) is a column count, (arg!) is the title, and (arg2)
is the index identifier (which was passed to \newscripindex).
3489 \newcommand\SB@makescripindex{’
3490 \renewenvironment{SB@lgidx}[1]{%
3491 \gdef\SB@idxcolhead{##1}%
3492 \hbox to\hsize{{\idxbook{##1}}\hfill}}

3493 \nobreak’,

3494 \SB@idxheadsep\nointerlineskip,

3495 }%

3496 \mark{\noexpand\relax}/

3497 \penalty-20\vskip3\p@\@plus3\p@\relax’
3498 }%

3499 \renewenvironment{SB@smidx}[1]
3500 {\begin{SB@lgidx}{##1}}{\end{SBOlgidx}}V
3501 \renewcommand\idxentry[2]{%

3502 \SB@ellipspread{\hskip.25cm\idxscripfont\relax##11},
3503 {{\idxrefsfont\relax##2}1}/,

3504 \SB@toks\expandafter{\SB@idxcolheadl}/,

3505 \mark{\noexpand\SB@idxcont{\the\SB@toks}}%

3506 }%

3507 \renewcommand\idxaltentry[2]{\SB@erridx{a scripture}}’
3508 \SB@displayindex’%
3509 }

\SB@makeauthorindex Create an author index. (argl) is a column count, (arg2) is the title, and (arg2) is
the index identifier (which was passed to \newauthindex).
3510 \newcommand\SB@makeauthorindex{%
3511 \renewenvironment{SB@lgidx} [1]1{}{}%
3512 \renewenvironment{SB@smidx} [1]{}{}%
3513 \renewcommand\idxentry[2]{%

3514 \SB@ellipspread{{\idxauthfont\relax\sfcode‘.\@m##1}}/
3515 {{\idxrefsfont##2}1}/,
3516 }%

3517 \renewcommand\idxaltentry[2]{\SBQerridx{an author}}’
3518 \SB@displayindex}
3519 }

160

15.16 Error Messages

We break error messages out into separate macros here in order to reduce the
length (in tokens) of the more frequently used macros that do actual work. This
can result in a small speed improvement on slower machines.

\SB@Error All errors and warnings will be reported as coming from package “songs”.

\SB@Warnss20 \newcommand\SBOError{\PackageError{songs}}
3521 \newcommand\SB@Warn{\PackageWarning{songs}}

\SB@errspos
3522 \newcommand\SB@errspos{/,
3523 \SBOError{Illegal \protect\songpos\space argument}{The argumey,
3524 nt to \protect\songpos\space must be a number from O to 3.1}%
3525 }

\SBQerrnse
3526 \newcommand\SB@errnse{/,
3527 \SB@Error{Nested songs environments are not supported}{End thj
3528 e previous songs environment before beginning the next one.},
3529 }

\SB@errpl
3530 \newcommand\SB@errpl{/
3531 \SB@Error{\protect\includeonlysongs\space not permitted withj,
3532 in a songs environment}{\protect\includeonlysongs\space can o%
3533 nly be used in the document preamble or between songs environj,
3534 ments in the document body.l}/
3535 }

\SBQ@errrtopt
3536 \newcommand\SB@errrtopt{/,
3537 \SB@Error{Cannot display chords in a rawtext dump}{You have uj
3538 sed the rawtext option in the \protect\usepackage\space linj,
3539 e and have either used the chorded option as well or have use
3540 d the \protect\chordson\space macro subsequently.}%
3541 }

\SB@warnrc
3542 \newcommand\SB@warnrc{%
3543 \SB@Warn{The \protect\repchoruses\space feature will not wor?,
3544 k when the number of columns is set to zerol})
3545 }

\SB@warnnoidx
3546 \newcommand\SB@warnnoidx{%
3547 \SB@Warn{Index command has no effect since no indexes are yeJ,
3548 t declaredl}
3549 }

161

\SBQ@errboo

\SB@errbor

\SB@erreov

\SB@erreoc

\SB@erreor

\SB@erreot

3550 \newcommand\SB@errboo{’

3551 \SB@Error{Encountered \protect\beginsong\space without seein,
3552 g an \protect\endsong\space for the previous songl/,

3553 {Song \thesongnum\space might be missing a

3554 n \protect\endsong\space line.}%

3555 F

3556 \newcommand\SB@errbor{/

3557 \SB@Error{Encountered \protect\beginsong\space without seeinj,
3558 g an \protect\endscripture\space for the preceding scriptur
3559 e quotation}{A scripture quotation appearing after sonj

3560 g \thesongnum\space might be missing aj

3561 n \protect\endscripture\space line.}}

3562 }

3563 \newcommand\SB@erreov{’

3564 \SB@Error{Encountered \protect\endsong\space without seein}
3565 g an \protect\endverse\space for the preceding versel}{Son/
3566 g \thesongnum\space has a \protect\beginverse\space},

3567 line with no matching \protect\endverse\space line.}%

3568 }

3569 \newcommand\SB@erreoc{’

3570 \SB@Error{Encountered \protect\endsong\space without seeinj,
3571 g an \protect\endchorus\space for the preceding chorus}{Son}
3572 g \thesongnum\space has a \protect\beginchorus\spacej,

3573 line with no matching \protect\endchorus\space line.}}

3574 }

3575 \newcommand\SB@erreor{}

3576 \SB@Error{Encountered \protect\endsong\space without seein}
3577 g an \protect\endscripture for the preceding scripture quot
3578 e}{A scripture quote appearing before song \thesongnum\space,
3579 ended with \protect\endsong\space instead of wit}

3580 h \protect\endscripture.}/,

3581 }

3582 \newcommand\SB@erreot{’

3583 \SB@Error{Encountered \protect\endsong\space with no matchinj,
3584 g \protect\beginsong}{Before song \thesongnum\space there waj,
3585 s an \protect\endsong\space with no matchinj

3586 g \protect\beginsong.}/

3587 }

162

\SBQerrbvv

\SB@errbvc

\SB@errbvt

\SBQ@errevc

\SB@errevo

\SB@errevt

3588 \newcommand\SB@errbvv{}

3589 \SB@Error{Encountered \protect\beginverse\space without seein,
3590 g an \protect\endverse\space for the preceding versel}{Son/
3591 g \thesongnum\space might have a verse that has nJ

3592 o \protect\endendverse\space line.}

3593 }

3594 \newcommand\SB@errbvc{/,

3595 \SB@Error{Encountered \protect\beginverse\space without seeinj,
3596 g an \protect\endchorus\space for the preceding chorus}{Son}
3597 g \thesongnum\space might have a chorus that has nj

3598 o \protect\endchorus\space line.}%

3599 }

3600 \newcommand\SB@errbvt{}

3601 \SBQ@Error{Encountered \protect\beginverse\space without firsj,
3602 t seeing a \protect\beginsong\space line}{Before son/

3603 g \thesongnum, there is a \protect\beginverse\space line noY
3604 t contained in any song.}%

3605 }

3606 \newcommand\SB@errevc{/,

3607 \SB@Error{Encountered \protect\endverse\space while process
3608 ing a chorus}{Song \thesongnum\space might havy,

3609 e a \protect\beginchorus\space concluded by aj

3610 n \protect\endverse\space instead of an \protect\endchorus.}/,
3611 }

3612 \newcommand\SBQerrevo{/,

3613 \SB@Error{Encountered \protect\endverse\space without firs
3614 t seeing a \protect\beginverse}{Song \thesongnum\space mj
3615 ight have an \protect\endverse\space with no matchin}

3616 g \protect\beginverse.l}%

3617 }

3618 \newcommand\SB@errevt{}

3619 \SB@Error{Encountered an \protect\endverse\space outside o/
3620 f any songl}{Before song \thesongnum, there is aj

3621 n \protect\endverse\space line not preceded b

3622 y a \protect\beginsong\space line.}J,

3623 }

163

\SB@erretex

3624 \newcommand\SB@erretex{/,

3625 \SB@Error{The \protect\repchoruses\space feature requires e-j
3626 TeX compatibility}{Your version of LaTeX2e does not appear t/
3627 o be e-TeX compatible. Find a distribution that includes e-TY
3628 eX support in order to use this feature.}/

3629 }

\SB@errbcv

3630 \newcommand\SB@errbcv{/,

3631 \SB@Error{Encountered \protect\beginchorus\space without seej,
3632 ing an \protect\endverse\space for the preceding versel}{Son}
3633 g \thesongnum\space might hav,

3634 e a \protect\beginverse\space with no matchy

3635 ing \protect\endverse.l}

3636 }

\SB@errbcc

3637 \newcommand\SB@errbcc{’

3638 \SBOError{Encountered \protect\beginchorus\space without see,
3639 ing an \protect\endchorus\space for the preceding chorusl},
3640 {Song \thesongnum\space might have a \protect\beginchorusj,
3641 \space with no matching \protect\endchorus.}/,

3642 }

\SB@errbct

3643 \newcommand\SB@errbct{/

3644 \SB@Error{Encountered \protect\beginchorus\space without seej,
3645 ing a \protect\beginsong\space line first}{After son%

3646 g \thesongnum\space there is a \protect\beginchorus\space,
3647 line outside of any song.l}V

3648 }

\SB@errecv

3649 \newcommand\SB@errecv{’

3650 \SB@Error{Encountered an \protect\endchorus\space while proc
3651 essing a verse}{Song \thesongnum\space might hav

3652 e a \protect\beginverse\space concluded by \protect\endchorus}
3653 \space instead of \protect\endverse.l}/,

3654 }

\SB@erreco

3655 \newcommand\SB@erreco{}

3656 \SB@Error{Encountered \protect\endchorus\space without firsj,
3657 t seeing a \protect\beginchorus}{Song \thesongnum\space mj
3658 ight have an \protect\endchorus\space with no match

3659 ing \protect\beginchorus.l}}

3660 }

164

\SBQerrect

3661 \newcommand\SB@errect{’

3662 \SB@Error{Encountered an \protect\endchorus\space outside o
3663 f any songl}{Before song \thesongnum, there is aj

3664 n \protect\endchorus\space line not preceded b

3665 y a \protect\beginsong\space line.}/,

3666

\SB@errbro

3667 \newcommand\SB@errbro{/,
3668 \SBQ@Error{Missing \protect\endsong}
3669 {Nested song and intersong environments are not supportedy,

3670 . Song \thesongnum\space might be missing aj,
3671 n \protect\endsong\space line.}%
3672 }

\SB@errbrr

3673 \newcommand\SB@errbrr{J

3674 \SBQ@Error{Nested intersong environments are not supportedl}’
3675 {A scripture quote or other intersong environment before s
3676 ong \thesongnum\space is missing its ending line.}),

3677 }

\SB@errero

3678 \newcommand\SB@errero{’

3679 \SB@Error{Encountered an \protect\endscripture\space whil},
3680 e processing a song}{Song \thesongnum\space ends wit%

3681 h \protect\endscripture\space when it should end wit

3682 h \protect\endsong.}/

3683 }

\SBQ@errert

3684 \newcommand\SB@errert{/,

3685 \SB@Error{Encountered an \protect\endscripture\space with,
3686 out first seeing a \protect\beginscripture}{Before son}
3687 g \thesongnum, there is an \protect\endscripture\space w}
3688 ith no matching \protect\beginscripture.}

3689 }

\SBQerrscrip

3690 \newcommand\SB@errscrip[1]{%

3691 \SBQ@Error{Encountered a \protect#l\space outside a scriptu’
3692 re quote}{\protect#1\space can only appear betweel,

3693 n \protect\beginscripture\space an,

3694 d \protect\endscripture\space lines.}},

3695 }

165

\SB@errchord
3696 \newcommand\SB@errchord{%
3697 \SBOError{Song \thesongnum\space seems to have chord/
3698 s that appear outside of any verse or chorus}{All chords a%
3699 nd lyrics should appear between \protect\beginverse\spacej,
3700 and \protect\endverse, or between \protect\beginchorus\space,
3701 and \protect\endchorus.l}/
3702 }

\SB@errreplay
3703 \newcommand\SB@errreplay{/
3704 \SB@Error{Replayed chord has no matching chord}{Son}
3705 g \thesongnum\space uses \protect”™ more times than the}
3706 re are chords in the previously memorized verse.l}/
3707 }

\SBQerrreg
3708 \newcommand\SB@errreg[1]{/
3709 \SB@Error{Unknown chord-replay register name: #1}{Chord-reJ,
3710 play registers must be declared with \protect\newchords.}/,
3711 }

\SB@errdup

3712 \newcommand\SB@errdup [1]{/
3713 \SB@Error{Duplicate definition of chord-replay register’,

3714 : #1}{\protect\newchords\space was used to declare the sal,
3715 me chord-replay register twice.l}/
3716 }

\SBQerrmbar
3717 \newcommand\SB@errmbar{’
3718 \SB@Error{Song \thesongnum\space seems to have measury,
3719 e bars that appear outside of any verse or chorus}{All mea
3720 sure bars (produced with \protect\mbar\space or |) must ap%
3721 pear between \protect\beginverse\space anj
3722 d \protect\endverse, or between \protect\beginchorus\space,
3723 and \protect\endchorus.}/,
3724 }

\SBQerrebar
3725 \newcommand\SB@errebar [2]{/
3726 \SB@Error{Ignoring unbalanced \expandafter\@gobble\string#2 i
3727 n \protect\gtab}{Found no \expandafter\@gobble\string#l to maj
3728 tch the \expandafter\@gobble\string#2.1}V
3729 }

\SB@errnoidx
3730 \newcommand\SB@errnoidx [1]{%
3731 \SB@Error{Unknown index identifier: #1}{This index identifie}
3732 r was never declared using \protect\newindex.}%
3733 }

166

\SB@erridx

3734 \newcommand\SB@erridx [1]{%

3735 \SB@Error{\protect\idxaltentry\space not allowed in #1 index}’
3736 {This error should not occur. The index generation routines haj
3737 ve malfunctioned. Try deleting all temporary files and then rej,
3738 compiling.}/

3739 }

15.17 Option Processing

\ifchorded Reserve conditionals for all of the various option settings. We wait to define these
\iflyric since if any are used earlier than this, it is an error in the package code, and we’d
\ifslides rather get an error than continue.

\ifmeasuressr4o \newif\ifchorded
\ifpartiallist3741 \newif\iflyric\lyrictrue
\ifrepchorus3742 \newif\ifslides
\iftranscapos3743 \newif\ifmeasures
\ifnolyrics3744 \newif\ifpartiallist
\ifrawtext3745 \newif\ifrepchorus
3746 \newif\iftranscapos
3747 \newif\ifnolyrics
3748 \newif\ifrawtext
3749 \newif\ifsongindexes\songindexestrue
3750 \newif\ifsepindexes\sepindexestrue
\ifSBComitscripgys) \newif\ifpagepreludes
3752 \newif\ifSBQcolorboxes
3753 \IfFileExists{color.sty}\SB@colorboxestrue\SBA@colorboxesfalse
3754 \newif\ifSBQomitscrip

\ifsongindexes
\ifsepindexes
\ifpagepreludes
\ifSB@colorboxes

\nolyrics The \nolyrics and \pagepreludes macros are just shorthand for \nolyricstrue
\pagepreludes and \pagepreludestrue, respectively.

3755 \newcommand\nolyrics{}
3756 \let\nolyrics\nolyricstrue
3757 \newcommand\pagepreludes{\pagepreludestrue\songpos0}

Finally we're ready to process all of the package options. This is delayed until
near the end because the option processing code needs to execute various macros
found in the previous sections.

3758 \SB@chordson
3759 \ProcessOptions\relax

\SB@colorbox Include the colors package and define colors, if requested.

3760 \ifSB@colorboxes

3761 \RequirePackage{color}

3762 \definecolor{SongbookShade}{gray}{.80}
3763 \newcommand\SB@colorbox [2]{%

3764 \ifx\@empty#1%

3765 \vbox{%

167

3766 \kern3\p@/

3767 \hbox{\kern3\p@{#2}\kern3\p@l}/
3768 \kern3\p@Y

3769 Y

3770 \else’,

3771 \colorbox{#1}{#2}%

3772 \fi%

3773}

3774 \else

3775 \newcommand\SB@colorbox [2]{\vbox{%
3776 \kern3\p@%

3777 \hbox{\kern3\p@{#2}\kern3\pQ}/
3778 \kern3\p@/,

3779 }}

3780 \fi

15.18 Rawtext Mode

If generating raw text, most of what has been defined previously is ignored in favor
of some very specialized macros that write all the song lyrics to a text file.

3781 \ifrawtext

3782 \SB@newwrite\SB@txtout

3783 \immediate\openout\SB@txtout=\jobname.txt
3784 \newif\ifSB@doEOL

3785 {\catcode‘\""M12

3786 \catcode‘\""J12 %

3787 \gdef\SB@printEOL{\ifSB@doEOL""M~~J\fi}}
3788 {\catcode‘#12\gdef\SBGhash{#1}}

3789 {\catcode‘&12\gdef\SBQamp{&}}

3790 \renewcommand\SBQ@@@beginsong{%

3791 \begingroup’

3792 \def\’{I\def\ ‘{H\def\v{\def\u{F\def\={}\def\"{}%
3793 \def\.{F\def\H{F\def\~{}\def\"{I\def\t{}/

3794 \def\copyright{(c)}%

3795 \let~\space},

3796 \let\par\SB@printEQOLY

3797 \let\#\SBGhash,

3798 \let\&\SB@amp’

3799 \catcode‘|[9 %

3800 \catcode‘*9 %

3801 \catcode‘"9 %

3802 \def\ [##11{}%

3803 \resettitlesy

3804 \immediate\write\SBOtxtout{\thesongnum. \songtitlel},
3805 \nexttitlel

3806 \foreachtitle{\immediate\write\SB@txtout{(\songtitle)}}%
3807 \ifx\songauthors\@empty\else,

3808 \immediate\write\SB@txtout{\songauthors}y,

3809 \fi%

168

3810 \ifx\SB@rawrefs\Q@empty\elsey,

3811 \immediate\write\SB@txtout{\SB@rawrefs}/,
3812 \fi%

3813 \immediate\write\SBQ@txtout{}%

3814 \SB@doEOLfalse}

3815 \obeylinesy,

3816 }

3817 \renewcommand\SB@endsong{’

3818 \SB@doEOLtrueY

3819 \immediate\write\SBO@txtout{\songcopyright\space,
3820 \songlicense\SB@printEOL}Y,

3821 \endgroup

3822 \SB@insongfalse},

3823 \stepcounter{songnum}?

3824 }

3825 \def\SB@parsesrefs#1{\def\songrefs{#1}}
3826 \long\def\beginverse#1#2\endverse{/
3827 \SB@doEOLtrue\begingroup/

3828 \def\textnote##1{##1}}

3829 \def\SB@temp{#11}%

3830 \def\SB@star{*}/

3831 \ifx\SB@temp\SB@stary

3832 \immediate\write\SB@txtout{\@gobble#2}/
3833 \elsey,

3834 \immediate\write\SB@txtout{#2}/,

3835 \fi%

3836 \endgroup\SB@doEOLfalse}

3837 \long\def\beginchorus#1\endchorus{%

3838 \SB@doEOLtrue\begingroup%

3839 \def\textnote##1{##1}Y

3840 \immediate\write\SB@txtout{Chorus:#11}J,
3841 \endgroup\SB@doEOLfalse}

3842 \long\def\beginscripture#l\endscripture{}
3843 \def\musicnote#1{}

3844 \def\textnote#1{)

3845 \SB@doEOLtrue,

3846 \immediate\write\SB@txtout{#1\SB@printEOL}/,
3847 \SB@doEOLfalse}

3848 \def\brk{}

3849 \def\rep#1{(x#1)}

3850 \def\echo#1{(#1)}

3851 \def\mbar#i#2{}

3852 \def\lrep{}

3853 \def\rrep{}

3854 \def\nolyrics{}

3855 \renewcommand\memorize[1] [I1{}

3856 \renewcommand\replay[1] [1{}

3857 \fi

169

15.19 Codeline Index

Underlined numbers refer to the code line where the corresponding entry is defined;
other numbers refer to the code lines where the entry is used.

Symbols
\" 2192, 3793
\# L 2603, 3797
\% e 3119, 3205
\N& 3798
\? 2190, 3792
N, 1105
\= 2217

\. 2195, 3084, 3094, 3793
\/ 1720, 1726, 2216, 2595

N} 1105
\= 2194, 3792
\@centercr 1228
\@currentlabel 818, 1271
\@flushglue 74,77
146, 161, 302, 550, 626,
724, 725, 814, 847, 1620
\@ifdefinable 29-33
\@ifnextchar .. 794, 797
2680, 2691, 3167, 3176
\@ifstar
724, 728, 731, 1247

\@ixpt 2614, 2615
\@onlypreamble 3072,
3074, 3076, 3210-3213
\@par 1197
\@sanitize 1524
\@seccntformat
........ 3000, 3001,
3004, 3008, 3009, 3012
\@sptoken 1016, 1027

1071, 1830, 2306, 2524
\@startsection 3002, 3010

\Qundefined 5
\@viiipt 2613, 2614
\@viipt 2612, 2613, 2752
\@vipt 2611, 2612, 2860
\@vpt 2610
\@xiipt 2617, 2618, 2831
\@xipt 2616, 2617
\@xivpt 2618, 2619
\@xviipt 2619, 2620
\@xxpt 2620, 2621
\@xxvpt 2621

2229, 2271,
2481, 2483, 2491, 2492
2633, 2640, 2666, 3802

\\ .. 735,736, 817, 1008,

1010, 1032, 1034, 1228,
2091, 2676, 2688, 3085,
3095, 3237, 3358, 3398
\" 2191, 2223,
2228, 3785, 3786, 3792
N 2189, 3792
\~ 2193, 3083, 3093, 3793
N e 89, 134, 2353
A
\NAA L 2208
\aa 2207
\Acolon 1651
\active 1089, 1092,

1099, 1682, 1683, 2069
2223, 2226, 2228, 2655
2658, 2664, 2665, 3083

\AE 2206
\ae 2205
\afterpreludeskip

.......... 100, 862
\alphascale 1773
\arabic 84, 87
\AtBeginDocument 304
\AtEndDocument 3126
\authbyword 3183
\authignoreword 3183
\authsepword 3183

B

\b 2202
\badness

1427, 1433, 1439, 3295
\BarreDelims 2879
\baselineadj 104, 905

170

\baselineskip
72, 107, 108,
893, 896, 897, 900, 903,
905, 990, 1278, 1284,
1364, 1623, 1624, 1994,
2037, 2044, 2052, 3312
\Bcolon 1651
\beforepostludeskip ...
100, 713, 869
\beginchorus 1331,
3572, 3609, 3631, 3638,
3640, 3644, 3646, 3657,
3659, 3700, 3722, 3837
\beginscripture
1612, 1656, 1668, 1674,
3686, 3688, 3693, 3842
\beginsong

785, 1255, 1337,
3551, 3557, 3584, 3586,
3602, 3622, 3645, 3665

\beginverse 1238,
3566, 3589, 3595, 3601,
3603, 3614, 3616, 3634,
3652, 3699, 3721, 3826

\bfseries 88, 135, 139,
141, 994, 3005, 3013
\break 381, 410,
417, 424, 636, 637, 3425
\brk 1446, 3848
\brkpenalty 124,

1453, 1461, 1466, 1471

C
\c o 2200
\c@page 450, 463, 549, 641
\c@section 857, 3136
\capo 1786
\catcode 1089,

1092, 1099, 1682, 1683
2069, 2223, 2226-2228,
2369, 26552658, 2664,
2665, 2893, 3083, 3084,
3119, 3205, 3785, 3786,
3788, 3789, 3799-3801

\cbarwidth
119, 162, 1206, 1400,

1401, 1406, 1415, 1451
\ccpenalty 124, 299, 1158
\centering 172,
938, 957, 3005, 3013

\ch 2273, 2349, 2629
\chapter 3338, 3339
\CheckCommand 1227
chorded (option) 192
\chordedfalse 214, 1510
\chordedtrue . 200, 1510
\chordlocals .. 97, 2230
\chordsoff 192
\chordson 192, 3540

chorus (environment) 1331
\chorusfont 54, 153, 1369
\chorusjustify
69, 155, 1369

\chorusmark
130, 1344, 1350

\clearpage
. 638, 640, 3030, 3391
\clineparams . 106, 2557
\closeout 3114, 3121
\colbotglue 143,
161, 209, 223, 302, 442,
627, 1167, 1176, 1475

\colorbox 3771
\columnsep . 265, 267

357, 3333, 3334, 3407
\commitsongs . 622, 3028
\copyright 3794

\cvpenalty 124, 301, 1156

D

\d .. 2201
\DeclareFlatSize . 2607
\DeclareLyricChar

..... 2130, 21892218
\DeclareNoHyphen

......... 2130, 2219
\DeclareNonLyric . 2130

\DeclareOption 149, 180—
183, 186, 192, 193, 226,
227, 252, 253, 256, 257

\define@key 776

\definecolor

\discretionary

\e@alloc
\echo
\echofont

1523, 3850
58, 1528, 1536
\emergencystretch 1625
\endchorus 833,
1253, 1305, 1335, 1340,
3571, 3573, 3596, 3598,
3610, 3639, 3641, 3650,
3652, 3656, 3658, 3662,
3664, 3701, 3723, 3837
\endendverse 3592
\endgraf 1203, 1663
\endlinechar 1529
\endscripture
1617, 3558, 3561,

3577, 3580, 3679, 3681,
3685, 3687, 3694, 3842
\endsong
790, 1264, 1302, 1340,
1380, 3552, 3554, 3564,
3570, 3576, 3579, 3583,
3585, 3668, 3671, 3682
\endverse
832, 1252, 1264, 1334,
1393, 3565, 3567, 3590,
3607, 3610, 3613, 3615,
3619, 3621, 3632, 3635,
3653, 3700, 3722, 3826

\enskip 1130, 1144
\ensuremath 2603
environments:
chorus 1331
idxblock 3304
intersong 1559
SBelgidx 3307
SB@smidx 3307
scripture 1612
SOng ... 785
songgroup 1548
songs 3015
verse 1238
verse*x 1238
\escapechar 2123
\eTeXversion 2,3
\everychorus .. 94, 1357
\everypar 1288, 1367, 1509
\everyverse ... 94, 1293
\exhyphenpenalty
......... 2586, 3314

\extendpostlude 133, 991

\extendprelude
....... 133, 938, 965

F
\f@baselineskip 2625
\f@size

107, 892, 914, 1623,

2600, 2623, 2625, 3312
\finalhyphendemerits
............. 1645
\flat 2604
\flatsymbol . 2603, 2606
\flt 895, 916, 1867
1916-1920, 2605, 2659
\fontencoding
1545, 2750, 2759, 2829
\fontfamily
1545, 2750, 2759, 2829
\fontseries
2751, 2760, 2830
\fontshape
2751, 2760, 2830
\fontsize 2624, 2724,
2752, 2761, 2831, 2860
\foreachtitle
756, 825, 962, 3806

G
2889, 2902, 3727
2903, 2907

\gtab ..
\gtabtrans

\H
\hangafter 175
\hangindent 175
\hbadness 3242, 3258, 3266

2198, 3793

\hfuzz . 3242, 3258, 3266
\hphantom 2483, 2633
\hrule ... 717, 852, 1568

\hsize 812, 844, 852, 864,
875, 932, 934, 937, 955,
1484, 14861488, 1566
1568, 1577, 2930, 2938
2039, 2941, 2946, 2948
3227, 3230, 3255, 3286,
3310, 3318, 3332, 3352,
3383, 3388, 3485, 3492

............ 52

\hyperlink .. 3044-3046
\hypertarget . 3038-3040

\hyphenchar 2568
\hyphenpenalty 2587, 3314
I
\i 2214
\idxaltentry 3305

3469, 3507, 3517, 3735
\idxauthfont . 139, 3514
\idxbgcolor ... 66, 3456
idxblock (environment)

............. 3304
\idxbook 141, 3492
\idxcont 142, 3485
\idxentry

3305, 3465, 3501, 3513
\idxheadfont . 135, 3457
\idxheadwidth

..... 113, 3454, 3457
\idxlyricfont 137, 3470
\idxrefsfont 140,

3467, 3471, 3503, 3515
\idxscripfont 138, 3502
\idxtitlefont 136, 3466
\if@filesw 3063
\if@twoside

463, 469, 474, 487, 549
\ifchorded . 233, 244,

894, 915, 1278, 1284,
1362, 1410, 1416, 1510,
1522, 2036, 2664, 3740
\IfFileExists
6, 11, 3345, 3753

3740
\ifmeasures 205,
219, 2442, 2665, 3740
\ifnolyrics . 2552, 3740
\ifpagepreludes 844, 851,
866, 882, 954, 957, 3740
\ifpartiallist
...... 610, 623, 725,
728, 731, 1475, 3740
\ifpdf 11
\ifrawtext 197, 3740, 3781

\ifrepchorus

\iflyric

271, 336, 598,
836, 1257, 1345, 1360,
1385, 1452, 1456, 3740

\ifSB@brokenword

2059, 2558, 2587
\ifSB@chordedspec
159, 190

\ifSB@chorustop
1311, 1410, 1416
\ifSB@colorboxes
3740, 3760
\ifSB@convertnotes
1733, 1793, 1800
\ifSB@doEOL . 3784, 3787
\ifSB@etex
1, 288, 1314, 1523
\ifSB@firstchord
2082, 2236, 2240
\ifSB@gettabind
2863, 2931, 2940
\ifSB@gotchorus
1313, 1346, 1385, 1456
\ifSB@inchorus
239, 250, 761,
833, 1205, 1253, 1305,
1335, 1376, 1400, 1450,
1502, 1516, 1967, 2522
\ifSB@insong
761, 787, 831, 1251,

1296, 1333, 1375, 1447,
1560, 1587, 1591, 1609
\ifSB@intersong
761, 788, 887, 1561,

1572, 1592, 1598, 1628,
1636, 1654, 1667, 1673
\ifSB@inverse 167,
238, 249, 761, 832, 1155,
1252, 1297, 1334, 1393,
1500, 1514, 1966, 2522
\ifSB@measurespec
190, 204, 218
\ifSB@needkey 1777, 1906
\ifSB@nohat . 2090, 2718
\ifSB@omitscrip
1580, 1600, 3740
10, 3035

\ifSB@Opdf
\ifSB@preamble
. 20, 159, 209, 223, 261
\ifSB@prefshrps
1776, 1909
\ifSB@prevverse

837, 1156,
1158, 1226, 1259, 1346

172

\ifSB@songsenv
278, 761, 3016
\ifSB@stanza
1150, 1153, 1504, 1518
\ifSBQtest
22, 377, 540, 592, 2289,
2319, 2330, 2371, 2392,
2468, 2532, 2553, 2963

\ifSB@testii ... 22, 384
\ifSB@trackch
2075, 2090, 2669
\ifSB@wordends
2059, 2538, 2582
\ifsepindexes
3346, 3378, 3391, 3740
\ifslides
52, 899, 919, 931, 3740
\ifsongindexes

3115, 3331, 3740
\iftranscapos 1787, 3740
\ifvnumbered 837,

1225, 1259, 1270, 1303
\includeonlysongs R
276, 3531, 3532
783, 3167

181, 183
183

\indexentry . .
\indexesoff ...
\indexeson
\indexsongsas
\indextitleentry
.......... 784, 3175
\input 3120, 3359, 3400
\interlinepenalty
123, 1201, 1202,
1204, 1213, 1214, 3292

intersong (environment)

............. 1559
\item 1236
\itemindent . 1231, 1232
\itemsep 1230

J
\j oo 2215
\jobname 3066, 3120, 3783
\justifycenter

....... 154, 156, 171

\justifyleft 69, 70, 165
L

\L ..o 2212

\L o 2211

\LARGE 88, 135, 3005, 3013

\Large 52
\large 96
\lastbox 705,
708, 1639, 1971, 3246
\lastcolglue .. 145, 543
\lastpenalty . 423, 1499
\lastskip
1172, 1575, 1970, 2541
\leaders 1415, 3224, 3293
\leftmargin . 1233, 1234
\leftskip 73, 77

91, 166, 167, 172, 174,
813, 846, 1401, 1402,
1482, 1487, 1621, 1640,
1661, 1677, 3241, 3291
\lineskip 110, 958, 3313
\lineskiplimit 109, 3313

\list 1229
\listparindent . 1232
\1g 1709, 1722
\lrep 2043, 3852
lyric (option) 192
\lyricfalse 200
\lyricfont . 50, 89, 152,

827, 913, 1186, 2483
\lyrictrue 214, 3741

M

\m@th 2596
\makeatletter 3119
\makepostlude 871, 989
\makeprelude .. 860, 929
\mark 347, 2008, 3496, 3505
\marks 711,

838, 1260, 1360, 1452
\maxdepth 320, 3320, 3366
\mbar 2030,

2032, 2347, 3720, 3851
\mch ... 2274, 2351, 2635
\meaning 2097, 2115

2158, 2159, 2162, 2530
\measurebar

2031, 2345, 2489

2492, 2637, 2640, 2661
\measuresfalse 242
\measuresoff
\measureson
\measurestrue

\memorize 1268, 2679, 3855

\meter .. 821, 1963, 2028
\meterfont 54, 1991, 1992
147, 2962
. 2253

\minfrets
\MultiwordChords
\musicnote

1522, 1787, 3843

N
\newauthorindex 3075
\newbox 31
\newchords

2673, 3710, 3714
\newcount 29
\newcounter 80, 81, 3033
\newdimen 30
\newenvironment

785, 1241, 1331,
1548, 1559, 1590, 1612,

3015, 3304, 3307, 3308
\newif 1,
10, 20, 22, 23, 190, 191,
761-765, 1150, 1225,
1226, 1311, 1313, 1733
1776, 1777, 2059, 2060,
2236, 2669, 2718, 2863,
3740-3752, 3754, 3784
\newindex 3071, 3732
\newlength 44,
98, 100, 102, 104, 113,
115, 117, 119, 121, 2721
\newmark 1320, 1321
\newmarks 1324, 1325
\newpage 641
\newscripindex 3073
\newsongkey
773, 778, 780-784
\newtoks 32
\newwrite 33
\nextcol 723
\nexttitle 746,
748, 758, 824, 961, 3805
\nobreakspace . 2235
noindexes (option) .. 183
\nolyrics 3755, 3854
\nolyricstrue . 3756
nomeasures (option) . 226
\nonfrenchspacing 1105
nopdfindex (option) . 186
\norepchoruses . 288

173

\normalfont
50, 140, 152, 2918
\normalsize 50, 140, 2918
noscripture (option) 253
noshading (option) .. 182
\nosongnumbers . 283
\notebgcolor .. 66, 1511
\notefont 54, 1479
\notejustify .. 71, 1489
\notenameA
1734, 1749, 1891
\notenameB
1734, 1750, 1892
\notenameC
1734, 1751, 1893
\notenameD
1734, 1752, 1894
\notenameE
1734, 1753, 1895
\notenameF
1734, 1754, 1896
\notenameG
1734, 1755, 1897
\notenames
1768, 1773, 1774
\notenamesin 1748, 1769
\notenamesout 1758, 1770
\notrans 1811
\noversenumbers . 284

\No ...
\obeylines
1196, 1664, 3815
\obeyspaces . 1095, 1099
\OE 2204
\oe 2203
\onesongcolumn 158, 256
onesongcolumn (option)

256

\openout 3066, 3117, 3783

options:
chorded
lyric
noindexes
nomeasures
nopdfindex
noscripture
noshading
onesongcolumn

......... 192
183
226
186
. 253
182
. 256

rawtext 181
showmeasures . 226
slides 149
transposecapos . 252
twosongcolumns . 256
unouter 179
\outer .. 179, 2102, 2107
P

\p@songnum 818
\p@versenum 1271
\PackageError 3520
\PackageWarning 3521
\pagepreludes 3755
\pagepreludestrue 3757
\pagetotal
. 370, 435, 3022, 3420
\parfillskip .. 74, 814,
847, 1620, 1645, 3311
\parindent

74, 91, 112, 166
169, 174, 847, 990, 1221,

1223, 1619, 1662, 3311
\parskip 814, 847, 937,
964, 990, 1620, 3311
\partiallisttrue .. 279
\pdfbookmark . 3035-3037
\pdfoutput 12-14
\placenote 76, 156, 1511
\placeversenum
....... 90, 173, 1279
\preferflats 1789
\prefersharps . 1789
\printchord 96,
895, 916, 2081, 2920
\printnoteA 1741,
1759, 1910, 1916, 1920
\printnoteB 1741,
1760, 1911, 1916, 1917
\printnoteC
1741, 1761, 1911, 1917
\printnoteD 1741,
1762, 1912, 1917, 1918
\printnoteE
1741, 1763, 1912, 1918
\printnoteF
1741, 1764, 1913, 1919
\printnoteG 1741,
1765, 1913, 1914, 1919
\printscrcite 65, 1616

\printsongnum
88, 116, 946, 977

\printversenum
89, 118, 285, 1273
\ProcessOptions .. 3759
\protected@edef
..... 818, 1271, 3129
\protected@write . 3079
R

\raggedright 1222
rawtext (option) 181
\rawtexttrue 181
\rep 1543, 3849
\repchoruses

288, 3543, 3625
\repchorusfalse 296, 659
\repchorustrue 291, 661
\replay
1268, 1355, 2691, 3856
\RequirePackage
6, 11, 46, 3761
\resettitles 744,
822, 826, 855, 930, 3803
\rightmargin 1233
\rightskip . 73,77, 172,
813, 846, 1483, 1488,
1621, 1660, 3245, 3291

\rmfamily 137
\rq 1716, 1728
\rrep 2051, 3853
S

\SB@@@beginsong
797, 805, 807, 3790
\SBe@@ech 2629
\SB@@@ebarre 2798
\SB@@@gtab
2899, 2902, 2908
\SB@@@mch 2635
\SB@@@pthead 1014
\SB@@beginchorus
1356, 1359, 1468
\SB@@beginsong . 785
\SB@@bskvfmt 785
\SB@@ch 2629
\SB@@chmacro 2338, 2340
\SB@@chord 2221, 2237
\SB@@doify 2764
\SB@@ebarre 2798

174

\SB@@echo 1523
\SB@@fretdot
2818, 2839, 2844
\SB@@gtab 2894, 2896
\SB@@idxcmd 3183
\SB@@idxentry 3167, 3176
\SBe@lop 733
\SB@@lowfret 2782
\SB@@mch 2635
\SB@@par 1197, 1217
\SB@@prspace 1094
\SB@@prstep 1062
\SB@@pthead 1014
\SB@@rechord . 202, 2705
\SB@@replay 2691
\SB@@selectcol
429, 519, 522, 525
\SB@@srcomma 1107
\SB@@srcso 1141
\SB@@srdash 1113
\SB@@srhyphen 1113
\SB@@srspace 1121
\SB@@tabargs 2976
\SB@QUTFtest 2111
\SB@accidental
2594, 2605, 2606
\SB@activehat

2076, 2078, 2080,

2272, 2341, 2641, 2662
\SB@addDtest
2137, 2139, 2141, 2156
\SB@addMtest 2146, 2174
\SB@addNtest
2135, 2144, 2165
\SB@addtoindex
3128, 3142, 3149
\SB@addtoindexes
823, 3140, 3172
\SB@addtotitles
825, 3146, 3174
\SB@allbarres
2777, 2783, 2824,

2850, 2885, 2927, 2957
\SB@allindexes

3052, 3060,
3061, 3116, 3184, 3187
\SB@amp 3789, 3798
\SB@app 47, 585,
775, 1881, 2885, 3087

\SBQ@appendsp
1005, 1048, 1831, 2437
\SB@atopfret 2732,
2746, 2747, 2756, 2860
\SB@bactivate 2791, 2824
\SB@balancerows
3228, 3234
\SB@barre 2810, 2834, 2849
\SB@barrel 2779, 2787
2792, 2796, 2808, 2847
\SB@barreN 2779,
2787, 2788, 2809, 2848
\SB@barresoff 2813, 2927
\SB@barreson 2813, 2957
\SB@barreY 2779,
2788, 2792, 2810, 2849
\SB@bbarre 2795, 2814
\SB@bdelims 2879
\SB@begincname 2221,
2222, 2631, 2638, 2889
\SB@beginverse 1239
1242, 1247, 1248, 1250
\SB@box
34, 318, 671, 672, 682,

683, 692, 694, 705, 708,
714, 895, 896, 916, 917
950, 970, 973, 975, 981,
985, 994, 995, 998, 999,
1186-1188, 1191, 1269,
1273-1276, 1279, 1300,
1361, 1381-1383, 1388,
1391, 1426, 1438, 1459,
1460, 1464, 1465, 1479,
1480, 1490, 1494, 1538,
1541, 1639, 1641, 1971—
1973, 1975, 1991, 1993,
1996, 1997, 2011, 2919,
2930, 2946, 3222, 3227,
3230, 3236, 3246-3248,
3254, 3257, 3269, 3279,
3317, 3321, 3322, 3325,
3347, 3367, 3368, 3395,
3421, 3423, 3431, 3433
\SB@boxii 34,
318, 319, 436, 438, 452,
944, 952, 970, 971, 1975,
1977, 1978, 1992, 1993,
1998, 1999, 2017, 2922,
2932, 2936, 2950, 3264,

3269, 3280, 3367, 3369,
3421, 3427, 3431, 3437
\SB@boxiii 34, 319
445, 447, 457, 502, 503,
2923, 2937, 2952, 2953,
3422, 3424, 3432, 3436
\SB@boxup 1478, 1511
\SB@bracket
. 201, 215, 2220, 2666
\SB@breakpoint
393, 562, 1154, 1164,

1453, 1461, 1466, 1471
\SB@brokenwordfalse ...
2535, 2546
\SB@brokenwordtrue
2538, 2548

\SB@bskvfmt
794, 800, 802, 803
\SB@bsoldfmt 785
\SB@cbarshift
77,168, 172, 1399

\SB@ch ... 203, 217, 2629
\SB@ch@off 217, 247, 2629
\SB@ch@on 203, 245, 2629
\SB@chbgroup 2309, 2448
\SB@chbspace
2415, 2416, 241
\SB@chbstok
2066, 2426, 2508
\SB@chdone 2256
2269, 2399, 2414, 2430,
2478, 2485, 2493, 2495

\SB@chegroup 2311, 2452
\SB@chegrpdone . 2452
\SB@chegrpmacro .. 2452
\SB@chegrpname . 2452
\SB@chegrpouter .. 2452
\SBQ@chegrpscan . 2452
\SB@chendspace

2259, 2412, 2429
\SB@chespace

2259, 2290, 2309,

2311, 2316, 2320, 2325,
2350, 2352, 2360-2362,
2372, 2412, 2429, 2445
\SB@chexpspace
2258, 2307,
2408, 2415, 2427, 2433
\SB@chgetname 2333, 2336

\SB@chgetspace . 2419

175

\SB@chhyph
\SB@chimpspace
2257, 2354, 2356,
2408, 2416, 2428, 2432
\SB@chkidxlst
3018, 3152, 3171
2350, 2479

2315, 2400

\SB@chlig
\SB@chlyrdone
2256, 2414, 2495
\SB@chmacro . 2300, 2328
\SB@chmain 2262
\SB@chmbar
2346, 2348, 2441
\SB@chmstop 2377
\SB@chmulti 2377
\SB@chnorm
2282, 2283, 2286
\SB@chnxtdone
2257, 2258, 2267,
2292, 2322, 2331, 2342,
2344, 2374, 2405, 2409,
2411, 2432, 2433, 2443
\SB@chnxtrelax
2267, 2271-2274
\SB@chnxtstep
2267, 22752277,
2290, 2316, 2320, 2325,
2372, 2403, 2428, 2445
\SB@chord 201, 2221, 2713
\SB@chordbox 2064,
2072, 2073, 2246, 2425,
2533, 2554, 2565, 2573

\SB@chordedspectrue . ..

.......... 194, 195
\SB@chordsoff 159, 192
\SB@chordson . 192, 3758
\SB@chorusbar

1382, 1405, 1459, 1464
\SB@chorusbox . 336, 598
600, 607, 662, 696, 712,
809, 836, 1257, 1312,
1347, 1348, 1386, 1387,
1457, 1458, 1562, 1593
\SB@chorustopfalse 1467
\SB@chorustoptrue 1341
\SB@chother . 2302, 2305
\SB@chothermac

......... 2359, 2365
\SB@chscan 2251, 2262,
2379, 2394, 2439, 2450

\SB@chspcdone 2430, 2495
\SB@chstart . 2250, 2270
\SB@chstep 2268, 2377
\SB@chstepfour
2362, 2377
\SB@chstepthree
2361, 2377
\SB@chsteptwo 2360, 2377

\SB@chtrymacro

2295, 2298
\SB@clearbskeys 773, 793

\SB@cleardpage
547, 629, 731

\SB@clearlig
2516, 2555, 2571, 2579
\SB@clearpage . 261, 533,
548, 571, 628, 650, 728
\SB@clearpboxes
....... 582, 585, 648
\SB@closeall 766,
787, 788, 790, 887, 1264,
1302, 1340, 1380, 1560,
1561, 1564, 1587, 1591,
1592, 1595, 1609, 1617
\SB@cmark
. 676, 685, 1260, 1328
\SB@cmarkclass
675, 684, 838,
1260, 1314, 1360, 1452
\SB@cnt 34,
259, 260, 263, 404, 411,
413, 418, 431, 440, 442,
461, 462, 464, 484, 485,
499-501, 503, 504, 506,
507, 510, 541-543, 1201,
1204, 1780-1783, 1865,
1868, 1871, 1874, 1884,
1890, 1899, 1903-1905,
1910, 1916, 1929, 2119-
2121, 2127, 2133, 2359,
2368, 2369, 2570, 2576,
2589, 2800, 2875, 2958,
2962, 3090, 3093, 3094,
3096, 3097, 3268, 3295,
3404, 3405, 3408, 3416,
3438, 3443, 3444, 3449
\SB@cntii . 34, 437, 438,
446, 447, 451, 452, 456,
457, 460, 469, 472, 474,

481, 483, 489, 498, 2796,
2819, 2823, 2836, 2961
\SB@colbox 312,
371, 373, 386, 390, 391,
403, 405, 406, 536, 558
\SB@colnum 310, 358, 371,
373, 376, 382, 437, 462,
485, 498, 499, 506, 542
\SB@colon 1651, 1652, 1653
\SB@colorbox 944,
975, 1511, 3456, 3760
\SB@colorboxesfalse ...
.......... 182, 3753
\SB@colorboxestrue 3753
\SB@colwidth

148, 265-269,
356, 717, 812, 844, 864,
1566, 3310, 3332-3335

\SBQ@computess

1412, 1413, 1422

\SB@convertnotesfalse

1771

\SB@convertnotestrue
......... 1756, 1766
\SB@cr@ . 817, 1268, 2670
\SB@creg 2091, 2672, 2686,
2688, 2696, 2698, 2703

\SB@ctail 2649, 2671,

2698, 2703, 2707, 2712
\SB@ctoken 2976
\SB@cwrite

..... 3077, 3133-3135
\SB@declare 2130
\SB@dimen 34,

356-359, 361, 369-371,
390, 392, 405, 408, 434,
435, 438, 503, 677, 679,
683, 686, 637, 689, 892,
893, 900, 901, 903, 908,
909, 914, 917, 920, 921,
923, 924, 952-955, 1184,
11871189, 1407, 1409,
1411, 1425, 1426, 1430,
1434, 1436, 1438, 1441,
1442, 1480-1484, 1993,
2001, 2005, 2009, 2015,
2022, 2037, 20442046,
2048, 2052, 2053, 2055,
2057, 2533, 2537, 2563
2566, 25972600, 2737

176

2739, 2741, 28352838,
2841, 2842, 2936—2939,
2942, 2952, 3219, 3239,
3240, 3244, 3255, 3256,
3260, 3265, 3272, 3285,
3286, 3288, 3300, 3302,
3321, 3419, 3420, 3429,
3434, 3477-3480, 3482
\SB@dimenii 34, 678, 686,
692, 1408, 1410, 1417,
1430, 1432, 1434, 1436,
1439, 1440, 1994-1999,
2002, 2006, 2024, 2941—
2944, 3254, 3287, 3288,
3290, 3293, 3417, 3427—
3429, 3438, 3480-3482
\SB@dimeniii
34, 679, 681, 687, 689,

691, 3260, 3261, 3265,
3270, 3272, 3273, 3276
\SB@dimeniv
34, 3261, 3263,
3270, 3273, 3276, 3278
\SB@displayindex
3330, 3473, 3508, 3518
\SB@do . 2764, 2869, 2967
\SB@dobarre
. 2777, 2783, 2824,

2850, 2885, 2927, 2957
\SB@doEOLfalse
3814, 3836, 3841, 3847
\SB@doEOLtrue
3818, 3827, 3838, 3845
\SB@doify
. 2764, 2981, 2986,

2088, 2989, 2993, 2994
\SB@dolq
\SB@donext
1028, 1030,
1038, 1040,
1076, 1078,
1084, 1123,
1826, 1829,
1836, 1846,
1863, 1866, 1869,
1875, 1877, 2266—2269,
2309, 2311, 2333, 2338,
2350, 2352, 2360-2362,
2427, 2710, 2713, 2716
\SB@dorq 1681

\SB@dothis 1001,
1819, 1823, 1850, 1924,
2250, 2266, 2282, 2315

\SB@dotranspose

1794, 1802, 1807, 1817

\SB@droppage .. 365, 433

\SB@ebarre 2798, 2815

\SB@echo 1523

\SBQ@ellipspread 3217,
3466, 3470, 3502, 3514

\SB@emitchord

2504, 2509, 2521

\SB@emptylist 733

\SB@endchorus 1331, 1374

\SB@endcname 2222,
2239, 2632, 2639, 2891

\SB@endparse 1011,
1031, 1052, 1058, 1077

\SB@endscripture

1612, 1627

785, 830, 3817

\SB@endverse

1240, 1243, 1295
\SB@envbox
. 45, 614, 848, 866,

1616, 1637, 1644, 3336,

3350, 3381, 3387, 3411
\SB@errbcc 1335, 3637
\SB@errbct 1337, 3643
\SB@errbcv 1334, 3630
\SB@errboo 787, 3550
\SB@errbor 788, 3556
\SB@errbro

1560, 1591, 3667
\SB@errbrr

1561, 1592, 3673
\SBQ@errbvc 1253, 3594
\SB@errbvt 1255, 3600
\SB@errbvv 1252, 3588
\SB@errchord 2522, 3696
\SB@errdup 2677, 3712
\SB@errebar . 2800, 3725
\SB@erreco 1394, 3655
\SB@errect 1396, 3661
\SB@errecv 1393, 3649
\SB@erreoc 833, 3569
\SB@erreor 887, 3575
\SB@erreot 888, 3582
\SB@erreov 832, 3563

\SB@errero
1587, 1609, 3678
\SB@errert
1587, 1609, 3684
\SB@erretex .. 294, 3624
\SB@errevc 1305, 3606
\SB@errevo 1306, 3612
\SB@errevt 1308, 3618
\SB@erridx
3507, 3517, 3734
\SB@errmbar . 1967, 3717
\SB@errnoidx
3156, 3180, 3441, 3730
\SBQerrnse 3016, 3526
\SB@Error

1053, 1958, 3520,

3523, 3527, 3531, 3537,
3551, 3557, 3564, 3570,
3576, 3583, 3589, 3595,
3601, 3607, 3613, 3619,
3625, 3631, 3638, 3644,
3650, 3656, 3662, 3668,
3674, 3679, 3685, 3691,
3697, 3704, 3709, 3713,
3718, 3726, 3731, 3735
\SB@errpl 278, 3530
\SBQerrreg
2684, 2694, 3708
\SB@errreplay 2708, 3703

\SB@errrtopt . 198, 3536
\SB@errscrip 1648,
1655, 1668, 1674, 3690
\SB@errspos .. 528, 3522
\SB@etextrue 4
\SBQ@everypar 1219,
1272, 1280, 1283, 1285,
1288, 1363, 1365, 1367
\SB@finger 2852, 2967
\SB@finloop
630, 631, 643, 644, 652
\SB@firstchord . 2236
\SB@firstchordfalse . ..
............. 2249
\SBe@firstchordtrue
......... 2236, 2281
\SB@flatsize 2604, 2622
\SB@fretbar
2735, 2961, 2964
\SB@fretdot . 2818, 2955

177

\SB@fretempty
2784, 2818, 2954, 2955
\SB@fretend . 2846, 2961
\SB@fretnum . 2723, 2922
\SB@fretwidth
2721, 2727, 2729, 2730,
2733, 2738, 2835, 2837,
2840, 2841, 2843, 2933
\SB@gettabindfalse
2089, 2863, 2974
\SB@gettabindtrue 2071
\SB@gotchorusfalse . 810
\SB@gotchorustrue 1258
\SB@groupcnt .. 581, 593
603, 604, 630, 631, 643,
644, 653, 666, 881, 1551
\SB@grouplvl . 884, 1549,
1553, 1555, 1556, 1558
\SB@gtab 2889
\SB@gtinc 2868, 2963
\SBegtinit
2868, 2926, 2956

3788, 3797
2078, 2647
2076, 2644
3183

\SB@hash

\SB@hat@notr

\SB@hat@tr

\SB@idxcmd
\SB@idxcolhead
3475, 3491, 3504
\SB@idxcont . 3484, 3505
\SB@idxentry 3167, 3176
\SB@idxheadsep
3476, 3487, 3494
\SB@idxitemsep
3298, 3358, 3398
\SB@idxlineskip . 3214
\SB@idxsetup
3309, 3323, 3355, 3399
\SB@ifempty
. 733, 749, 1268, 2707
\SB@ilpenalty
1206, 1208, 1212
\SB@inchorusfalse ..
765, 1379
\SB@inchorustrue
\SB@indexlist
3017, 3029, 3051,
3141, 3147, 3153, 3154,
3157, 3161, 3163, 3170
\SB@insertchorus

\SB@insongfalse
762, 879, 3822
\SB@insongtrue
\SB@intersongfalse
763, 1585, 1607
\SB@intersongtrue
1563, 1594
\SB@inversefalse

695, 710, 764, 1301
\SB@inversetrue

\SBQ@iwrite
3068, 3079, 3105, 3197
\SB@keepactive

\SB@lastcmark
700, 838, 1328

\SB@ldgleft
\SB@ldgright
\SB@lettertests
2139, 2152, 2288
SB@lgidx (environment)
3307

\SB@lgindex
3371, 3374, 3394
\SB@ligfull . 2482, 2492,
2513, 2519, 2555, 2579
\SB@ligpost 2481,
2491, 2513, 2518, 2571
\SB@ligpre
2480, 2513, 2517, 2561
\SB@loadactives
. 238, 239, 249, 250,

1246, 1290, 1370, 2653

\SB@lop 733

752, 2649, 2712, 3238
\SB@lowfret . 2782, 2877
\SB@lyric 2061, 2243,

2279, 2280, 2314, 2378,
2393, 2422, 2424, 2437,
2449, 2488, 2501, 2509
\SB@lyricbox
2064, 2241, 2420, 2421,
2425, 2496, 2497, 2536,
2537, 2552, 2559, 2560,
2563, 2567, 2575, 2583
\SB@lyricnohyp
2063, 2314, 2499
\SB@macrotests
2135, 2144, 2152, 2370

\SB@makeauthorindex . ..
3448, 3510
\SB@makeidxcolumn
3316, 3403, 3407
\SB@makembar . 232, 1965
\SB@makescripindex
......... 3447, 3489
\SB@maketitleindex
3446, 3453

\SB@maxmin
315, 2005, 2006, 2563,
3290, 3429, 3479, 3481
\SB@mbar . 232, 243, 2030
\SB@mch
234, 236, 245, 247, 2635
\SB@mch@m 236, 2635
\SB@mch@on 234, 2635
\SB@mchlig 2352, 2479
\SB@measuremark
1964, 1981, 2008
\SB@measuresoff
205, 219, 221, 226
\SB@measureson
205, 207, 219, 226
\SB@measurespectrue . . .

.......... 228, 229
\SB@memorize 2679
\SB@meterbot

1961, 1963, 2032
\SB@metertop

1961, 1963, 2032
\SB@migrate 344, 352, 353
\SB@mkpage . 316, 371,

438, 447, 452, 457, 503
\SB@mrkbox
314, 350, 351, 378
\SB@multiline
3258, 3266, 3281, 3283
\SB@multitests

2146, 2152, 2391
\SB@nbsp 2235, 2355
\SB@needkeyfalse

1789, 1790, 1928
\SB@needkeytrue

......... 1784, 1954
\SB@newbox . 29, 3840,
45, 309, 312-314, 584,
1312, 2064, 2065, 3127

178

\SB@newcount . 29, 42, 43
124-129, 147, 310, 311,
581, 1558, 1732, 2062

\SB@newdimen 29,
34-37, 148, 1218, 2864
\SB@newindex
3056, 3071, 3073, 3075

\SB@newtoks
29, 41, 741, 742, 2061,
2063, 2670, 2671, 2675
\SB@newwrite

29, 3065, 3782

\SB@next 1001, 1014, 1016
1024, 1025, 1027, 1029
1031, 1034, 1050, 1062,
1064, 1071, 1073, 1075,
1077, 1079, 1107, 1109,
1113, 1115, 1117, 1119
1121, 1124, 1127, 1148,
1702, 1703, 1706, 1713
1823, 1825, 1827, 1830
1844, 1847, 1854, 1862,
1867, 1870, 1888, 1933,
1939, 1948, 2097, 2131,
2132, 2158, 2159, 2162,
2264, 2271-2277, 2287,
2299, 2306, 2308, 2310,
2312, 2317, 2341, 2343,
2345, 2347, 2349, 2351,
2353, 2355, 2358, 2389,
2399, 2401, 2426, 2440,
2455, 2457, 2460, 2489,
2508, 2524-2528, 2530

\SB@nextcol

. 400, 442, 543, 550,
626, 627, 724, 725, 1475

\SB@nextname 1004,
2167, 2182, 2263, 2337,
2368, 2390, 2438, 2453,
2475, 2490, 2507, 2530

\SB@nocmark

...... 674, 711, 1328
\SB@nocmarkclass

...... 673, 711, 1314
\SB@nohatfalse . 2645
\SB@nohattrue . 2071
\SB@noreplay 2093,

2483, 2633, 2714, 2719

\SB@numcols 256, 257, 260,
263, 264, 266, 269, 290,
306, 310, 322, 332, 367,
376, 390, 402, 460, 461,
464, 469, 472, 474, 481,
483, 484, 489, 501, 541,
550, 556, 570, 624, 812,
843, 864, 1566, 3025

\SBOnumhyps
2062, 2244, 2313, 2402,
2498, 2544, 2545, 2586

\SB@O 2852

\SB@obeylines

1194, 1291, 1371

\SB@omitscripfalse . 254

\SB@omitscriptrue .

253, 255

\SB@oneidxpage
3329, 3410, 3422, 3432
\SB@onfret
2726, 2820, 2828
\SB@otesta
\SB@otestb
\SB@othertests
2137, 2152, 2318

\SB@out 3054,
3064-3066, 3068, 3078,
3079, 3109, 3113, 3114,
3117, 3121, 3186, 3196
\SB@outer 179, 2228, 2229
\SB@outertest
2096, 2329, 2467
\SB@output
366, 421, 544, 551, 559
\SB@par 1195,
1199, 1217, 2343, 2526
\SB@parindent 1218
1221, 1223, 1619, 1621,
1644, 1660-1662, 1677

\SB@parsesrefs

. 779, 1055, 1615, 3825
\SB@parsetitles

.......... 791, 1006
\SB@partbox 583, 594, 599
\SB@pdffalse 10
\SB@pdftrue 11, 15
\SB@pgbox 313

355, 359, 360, 380, 535
\SB@prcomma . 1076, 1088

\SB@prcpy 1065, 1082, 1086

\SB@preamblefalse . 307
\SB@preambletrue .. 21
\SB@prefshrpsfalse

1790, 1931, 1934, 1940,
1944, 1946, 1949, 1953
\SB@prefshrpstrue 1789,
1930, 1932, 1936, 1938,
1942, 1945, 1947, 1951
\SB@prevversefalse
.......... 697, 1392
\SB@prevversetrue .
695, 710, 820, 1304
\SB@prgr 1080, 1086
\SB@prhyphen 1074, 1088
\SB@printEQOL
3787, 3796, 3820, 3846
\SB@prloop
1058, 1062, 1086,

1087, 1090, 1093, 1097
\SB@prspace . 1072, 1094
\SB@prstep 1062
\SB@ptbg 1030, 1046
\SB@pthead
1011, 1014, 1036
\SB@ptloop
1025, 1038, 1046, 1049
\SB@ptmain
1019, 1025, 1026
1028, 1047

\SB@ptsp
\SB@ptstep
1036, 1038, 1041, 1046
\SB@putbox
. 696, 1182, 1300, 1383
\SB@putboxes

....... 389, 436, 558
\SBQquotesactive
1681, 1695, 1701
\SB@raggedright
815, 957, 990, 1220
\SB@rawrefs ... 767, 778,
779, 823, 3810, 3811
\SB@rdqleft 1681
\SB@rdqright 1681
\SB@rechord
. 202, 216, 2642, 2705
\SB@repcolon
2034, 2049, 2054
\SB@replay 2691
\SB@scanlq 1681
\SB@scanrq 1681

\SB@scripdent . 1672
\SB@selectcol 428,
516, 519, 522, 525, 557
\SB@setbaselineskip . . .
210, 224, 828,
891, 1289, 1369, 1510
\SB@setchord 2067, 2248
\SB@setkeysig 1906, 1927
\SB@setversesep 305, 907
\SB@sgroup
579, 589, 591, 593, 880,
884, 1550, 1556, 3021
\SB@skip
34, 834, 861, 868, 1167,
1168, 1170, 1172, 1179,
1411-1413, 1415, 1417
1419, 1575, 1576, 1970,
1984, 1987, 2541, 2542
SB@smidx (environment)
3307

\SB@songbox
. 309, 398, 445, 502,

566, 572, 575, 595, 606,
614, 656, 811, 865, 867,
1565, 1581, 1596, 1601
\SB@songlistbrk
618, 627, 637
\SB@songlistcdp
618, 629, 639
\SB@songlistcp
618, 628, 638
\SB@songlistnc
618, 626, 636
\SB@songsenvfalse .
761, 3031
\SB@songsenvtrue . 3026
\SB@songwrites 792,
850, 3127, 3131, 3132
\SB@spbegnew

444, 473, 482
\SB@spcinit . 2245, 2253
\SB@spdblpg 459, 477, 491
\SB@spextnew

....... 449, 470, 488
\SB@spos 439,
517, 520, 523, 526, 531
\SB@sposi 468, 520
\SB@sposii 480, 508, 523

\SB@sposiii ... 497, 526
\SB@sractives 1057, 1098
\SB@srcomma . 1101, 1107
\SB@srcso 1128, 1141
\SB@srdash 1113
\SB@srhyphen 1101, 1113
\SB@srspace

1101, 1109, 1121, 1143
\SB@srspacing 1102, 1104
\SB@stanzabreak

...... 695, 697, 710,

1151, 1265, 1343, 1349
\SB@stanzafalse . 808
\SB@stanzatrue 1267, 1354
\SB@star 3830, 3831
\SB@stypcol
554, 555, 1605
....... 554,
1603, 1605

\SB@stype
597, 610,
\SB@styppage
569, 615, 1603
\SB@submitenv . 612, 882
\SB@submitpart 588, 610
\SB@submitsong
. 609, 883, 1583, 1604
\SB@tabargs . 2912, 2976
\SB@tabindent 2241, 2242,
2863, 2932-2934, 2944
\SB@targfing 2865,
2911, 2967, 2988, 2993
\SB@targfret 2865
2909, 2922, 2985, 2992
\SB@targsfing 2965
\SB@targstr . 2865, 2910,
2913, 2914, 2928, 2961,
2981, 2986, 2989, 2994
\SB@temp 22, 318,
324, 346, 347, 362, 365,
591, 625-629, 635-639,
653, 673-676, 684, 685,
700, 738, 739, 909, 911,
1097, 1141, 1143, 1849,
1881, 1891-1897, 1901,
1907, 1922, 1980, 1981,
2000, 2003, 2020, 2108,
2109, 2124-2126, 2175,
2183, 2186, 2555, 2571,
2579, 2592, 2856-2859,
2979, 2980, 2982, 2984,
2998, 3000, 3004, 3008,

3012, 3089, 3100-3103,
3107, 3116, 3118, 3141
3143, 3147-3149, 3153,
3155, 3187, 3188, 3197,
3220, 3223, 3243, 3289,
3337, 3340, 3343, 3442,
3444, 3445, 3829, 3831
\SB@tempii 22,
319, 323, 327, 593, 595,
597, 600, 653, 655, 657,
658, 663, 665, 910, 911,
3106, 3107, 3129, 3130,
3155, 3156, 3158, 3161,
3194, 3195, 3235, 3294

\SB@tempiii 22
\SB@tempiv 22
\SB@tempv

. 22, 1803, 1805, 1808
\SB@testfalse . 372, 537,

590, 2109, 2150, 2151,
2366, 2523, 2551, 2960
\SB@testiifalse 374, 376
\SB@testiitrue 372
\SB@testtrue
. 374, 376, 534, 591,

2109, 2149, 2151, 2288,
2318, 2369, 2391, 2524
2528, 2552, 2955, 2962
\SB@titlelist . 741, 745,
1008, 1032, 1042, 1043
\SB@titlesep 1010, 1051
\SB@titletail
741, 745, 749, 752

\SB@toks
34, 345-347, 752, 753,
1009, 1035, 1043, 1044,
1048, 1057, 1059, 1086,
1087, 1090, 1093, 1096,
1795, 1803, 1808, 1818,
1828, 1831, 1839, 1852,
1857, 1900, 1901, 1908,
1922, 2649, 2650, 2709,
2712, 2716, 2766, 2769,
2773, 3108, 3109, 3158,
3160, 3163, 3221, 3225,
3235, 3237-3239, 3403,
3406, 3410, 3504, 3505
\SB@topempty
2746, 28572859, 2925
\SB@top0 2746, 2924

180

\SB@topX 2746, 2924
\SB@tracc 1869, 1872, 1888
\SB@trackch 2669
\SB@trackchfalse
2695, 2702
\SB@trackchtrue .. 2685
\SB@transposefactor . ..
816, 1732, 1779, 1780,
1783, 1792, 1801, 1813,
1864, 1903, 1906, 2898
\SB@trend 1820, 1854, 1957

\SB@trgroup . 1826, 1838
\SB@trmain
1819, 1824, 1924
\SB@trnote 1850, 1861
\SB@trnotestep
......... 1863, 1879
\SB@trscan

1820, 1823, 1840
1843, 1846, 1882, 1925

\SBO@trskip
1829, 1832, 1842
\SB@trstep 1834, 1845
\SB@trtrans 1866,
1875, 1885, 1888, 1889
\SB@txtout

3782, 3783, 3804, 3806,
3808, 3811, 3813, 3819,

3832, 3834, 3840, 3846
\SBeUefour 2111
\SB@U@three 2111
\SB@U@two 2111
\SB@uncombine . 3112
\SB@updatepage

329, 334, 349, 433
\SBQUTFtest

2111, 2132, 2358
\SB@Warn 3520, 3543, 3547
\SB@warnnoidx 3185, 3546
\SB@warnrc 271, 290, 3542

\SB@wordendsfalse 2532
\SB@wordendstrue . 2532
\SB@X 2852
\SB@Z 2852

\sbarheight 121, 163, 394,
395, 563, 564, 704, 715,
717, 851, 852, 872, 875,
1567, 1568, 1573, 1577

\scantokens 1530

\scitehere 1629, 1635

\scleardpage 730
\sclearpage 727
\scripindent 1672
\scripoutdent 1672
scripture (environment)
............ 1612
\scripturefont 61, 1622
\scriptureoff 157, 253
\scriptureon 253
\selectfont
1545, 2035, 2626, 2724,
2752, 2761, 2831, 2860
\sepindexestrue .. 3750
\sepverses 297
\setkeys 804
\setlicense ... 772, 782
\sfcode . 994, 1105, 3514
\sffamily . 52, 57, 65,

88, 96, 135, 136, 138,
2724, 2860, 3005, 3013

\sharpsymbol 2603, 2605
\shiftdblquotes 63, 1681
\showauthors .. 133, 993
\showindex 3440

showmeasures (option) 226
\showrefs 133, 997
\shrp ... 895, 916, 1870,

1910-1914, 2605, 2660

\slides 149
slides (option) . 149
\slidestrue 151
\slshape 52, 59,

96, 136, 138, 153, 998
\small 65,

138, 139, 141, 142, 938
\snumbgcolor 66, 944, 975
\solfedge 1773
song (environment) .. 785
\songauthors .. 767, 780

823, 994, 3807, 3808
\songchapter 2999, 3340
\songcolumns
256, 306, 3025
\songcopyright

134, 767, 781, 3819
songgroup (environment)
1548
. 185

\songindexesfalse
\songindexestrue
184, 3749

\songlicense
134, 767, 772, 3820
\songlink 188, 3043
\songlist
276, 591, 625, 635
\songmark 130, 849
\songnumstyle 82
\songnumwidth . 115, 283,
943, 945, 951, 968, 976
\songpos 514,
532, 3523, 3524, 3757
\songrefs . T71, 778,
998, 1059, 1616, 3825
songs (environment) 3015
\songsection 3007, 3337
\songtarget

\songtitle
. 743, 750, 753, 757,

758, 823, 825, 932, 960,
962, 3037, 3804, 3806
\spacefactor
1125, 1126, 2576, 2589
\spenalty
129, 160, 393, 562
\splitbotmark 353, 3324
\splitfirstmark

352, 1980
\splitfirstmarks
673, 675, 684
\splitmaxdepth
320, 3320, 3366
\splittopskip
320, 3320, 3366
2213
51, 932, 959
1666

\ss
\stitlefont
\strophe

\t o
\textbf
\textheight
209, 369, 434, 447, 452,
457, 3367, 3379, 3419
\textnote 1497,
1522, 3828, 3839, 3844
\textwidth 268, 844
\theSB@songsnum

142

\thesongnum
. 82, 818, 858, 880,

946, 977, 1550, 3037
3059, 3135, 3553, 3560,
3566, 3572, 3578, 3584,
3591, 3597, 3603, 3608,
3614, 3620, 3633, 3640,
3646, 3651, 3657, 3663,
3670, 3676, 3680, 3687,
3697, 3705, 3718, 3804
\theversenum
85, 1271, 1273
57, 964, 991

. 3183
\transcapostrue ... 252
\transpose 1778, 1787
transposecapos (option) .

\tiny
\titleprefixword

\transposehere

1791, 1814,
2084, 2650, 2907, 2920
\trchordformat

1808, 1822
... 256

twosongcolumns (option) .

\twosongcolumns

\u
\uccode

1848, 1880, 3093, 3094

unouter (option) 179
\uppercase 3095
\upshape 57, 59
\usefont 62, 2035
\usepackage 3538
v
\v .. 2197, 3792
\vbadness 432, 670, 1424,

1976, 3365, 3416, 3438
\vcpenalty 124, 300, 1158
\verse 1227
verse (environment) 1238
versex (environment) 1238
\versefont 54, 1289
\versejustify

69, 154, 155, 1289
\versemark 130, 1266
\versenumstyle 85

\versenumwidth 117,
167, 286, 1274, 1276
\versesep

98, 713, 834, 910, 920,

923, 1161, 1505, 1519
\vfuzz .. 432, 670, 1424,
1976, 3365, 3417, 3438
1225

\vnumbered

\vnumberedfalse

1242, 1247, 1342
\vnumberedtrue 1239, 1248
\vrule . 875, 1278, 1284,

1364, 1415, 1577, 2024,
2046, 2048, 2055, 2057,
2728, 2741, 2757, 2842
\vsize 381
\vsplit 324, 672, 683,
692, 1978, 3321, 3367

182

\vvpenalty
124, 298, 300, 301, 1156

\write 3068,
3109, 3196, 3804, 3806,
3808, 3811, 3813, 3819,
3832, 3834, 3840, 3846

	Introduction
	Terms of Use
	Sample Document
	Initialization and Options
	lyric
	chorded
	slides
	rawtext
	\chordson
	\chordsoff
	\slides
	nomeasures
	showmeasures
	\measureson
	\measuresoff
	transposecapos
	noindexes
	\indexeson
	\indexesoff
	nopdfindex
	noscripture
	\scriptureon
	\scriptureoff
	noshading
	\includeonlysongs

	Songs
	Beginning a Song
	songs
	\beginsong
	\endsong
	by=
	cr=
	li=
	\setlicense
	sr=

	Verses and Choruses
	\beginverse
	\endverse
	\beginchorus
	\endchorus

	Chords
	\[
	#
	&
	\nolyrics
	\DeclareLyricChar
	\DeclareNonLyric
	\DeclareNoHyphen
	\MultiwordChords
	\shrp
	\flt

	Replaying Chords and Choruses
	^
	\memorize
	\newchords
	\replay
	\repchoruses
	\norepchoruses

	Line and Column Breaks
	\brk
	\nextcol
	\sclearpage
	\scleardpage

	Echoes and Repeats
	\echo
	\rep
	\lrep
	\rrep

	Measure Bars
	\measurebar
	|
	\meter
	\mbar

	Textual Notes
	\textnote
	\musicnote
	\capo

	Chords in Ligatures
	\ch
	\mch

	Guitar Tablatures
	\gtab
	\minfrets

	Automatic Transposition
	\transpose
	\preferflats
	\prefersharps
	\trchordformat
	\solfedge
	\alphascale
	\notenames
	\notenamesin
	\notenamesout
	\transposehere
	\notrans
	\gtabtrans

	Between Songs
	Intersong Displays
	intersong
	intersong*
	songgroup

	Scripture Quotations
	\beginscripture
	\endscripture
	\Acolon
	\Bcolon
	\strophe
	\scripindent
	\scripoutdent

	Chapters and Sections
	\songsection
	\songchapter

	Indexes
	Index Creation
	\newindex
	\newauthorindex
	\newscripindex
	\showindex

	Index Entries
	index=
	ititle=
	\indexentry
	\indextitleentry

	Compiling

	Customizing the Book
	Song and Verse Numbering
	songnum
	\thesongnum
	\printsongnum
	\songnumwidth
	\nosongnumbers
	versenum
	\theversenum
	\printversenum
	\versenumwidth
	\noversenumbers
	\placeversenum

	Song Appearance
	\lyricfont
	\stitlefont
	\versefont
	\chorusfont
	\meterfont
	\echofont
	\notefont
	\notebgcolor
	\snumbgcolor
	\printchord
	\sharpsymbol
	\flatsymbol
	\everyverse
	\everychorus
	\versesep
	\afterpreludeskip
	\beforepostludeskip
	\baselineadj
	\clineparams
	\cbarwidth
	\sbarheight
	\extendprelude
	\showauthors
	\showrefs
	\extendpostlude
	\makeprelude
	\makepostlude
	\vvpenalty
	\ccpenalty
	\vcpenalty
	\cvpenalty
	\brkpenalty
	\sepverses
	\versejustify
	\chorusjustify
	\justifyleft
	\justifycenter
	\notejustify
	\placenote

	Scripture Appearance
	\scripturefont
	\printscrcite

	Conditional Blocks
	\if...

	Page Layout
	\songcolumns
	\pagepreludes
	\columnsep
	\colbotglue
	\lastcolglue
	\songpos
	\spenalty

	Indexes
	Index Appearance
	\sepindexestrue
	\sepindexesfalse
	\idxheadwidth
	\idxrefsfont
	\idxtitlefont
	\idxlyricfont
	\idxheadfont
	\idxbgcolor
	\idxauthfont
	\idxscripfont
	\idxbook
	\idxcont

	Entry References
	\indexsongsas

	PDF Bookmarks and Links
	\songtarget
	\songlink

	Sort Order
	Special Words In Song Info
	\titleprefixword
	\authsepword
	\authbyword
	\authignoreword

	Page Headers and Footers
	\songmark
	\versemark
	\chorusmark

	Defining New Beginsong Keyvals
	\newsongkey

	Font Kerning Corrections
	\chordlocals
	\shiftdblquotes

	Informational Macros
	\songauthors
	\songrefs
	\songcopyright
	\songlicense
	\songtitle
	\resettitles
	\nexttitle
	\foreachtitle
	\songlist

	Other Resources
	GNU General Public License
	Implementation
	Initialization
	Default Parameters
	\lyricfont
	\stitlefont
	\versefont
	\chorusfont
	\notefont
	\meterfont
	\echofont
	\scripturefont
	\printscrcite
	\snumbgcolor
	\notebgcolor
	\idxbgcolor
	\versejustify
	\chorusjustify
	\notejustify
	\placenote
	\thesongnum
	\theversenum
	\printsongnum
	\printversenum
	\placeversenum
	\everyverse
	\everychorus
	\printchord
	\chordlocals
	\versesep
	\afterpreludeskip
	\beforepostludeskip
	\baselineadj
	\clineparams
	\idxheadwidth
	\songnumwidth
	\versenumwidth
	\vvpenalty
	\ccpenalty
	\vcpenalty
	\cvpenalty
	\brkpenalty
	\spenalty
	\songmark
	\versemark
	\chorusmark
	\extendprelude
	\extendpostlude
	\idxheadfont
	\idxtitlefont
	\idxlyricfont
	\idxscripfont
	\idxauthfont
	\idxrefsfont
	\idxbook
	\idxcont

	Package Options
	slides
	\slides
	unouter
	rawtext
	noshading
	noindexes
	\indexeson
	\indexesoff
	nopdfindex
	chorded
	lyric
	\chordson
	\chordsoff
	showmeasures
	nomeasures
	\measureson
	\measuresoff
	transposecapos
	noscripture
	\scriptureon
	\scriptureoff
	onesongcolumn
	twosongcolumns
	\onesongcolumn
	\twosongcolumns
	\songcolumns
	\includeonlysongs
	\nosongnumbers
	\noversenumbers
	\repchoruses
	\norepchoruses

	Page-builder
	\commitsongs
	\nextcol
	\sclearpage
	\scleardpage

	Songs
	\resettitles
	\nexttitle
	\foreachtitle
	\songauthors
	\songcopyright
	\songlicense
	\songrefs
	\setlicense
	\newsongkey
	song
	\makeprelude
	\makepostlude
	\showauthors
	\showrefs

	Verses and Choruses
	verse
	chorus
	\brk
	\textnote
	\musicnote
	\echo
	\rep

	Scripture Quotations
	songgroup
	intersong
	scripture
	\scitehere
	\Acolon
	\Bcolon
	\strophe
	\scripindent
	\scripoutdent
	\shiftdblquotes

	Transposition
	\notenamesin
	\notenamesout
	\notenames
	\alphascale
	\solfedge
	\transpose
	\capo
	\prefersharps
	\preferflats
	\transposehere
	\notrans
	\trchordformat

	Measure Bars
	\meter
	\mbar
	\measurebar
	\lrep
	\rrep

	Lyric Scanning
	\DeclareLyricChar
	\DeclareNonLyric
	\DeclareNoHyphen
	\MultiwordChords

	Chords
	\[
	\sharpsymbol
	\flatsymbol
	\shrp
	\flt
	\ch
	\mch

	Chord Replaying
	\newchords
	\memorize
	\replay

	Guitar Tablatures
	\gtabtrans
	\gtab

	Book Sectioning
	\songchapter
	\songsection
	songs

	Index Generation
	\songtarget
	\songlink
	\newindex
	\newscripindex
	\newauthorindex
	\indexentry
	\indextitleentry
	\indexsongsas
	\authsepword
	\authbyword
	\authignoreword
	\titleprefixword
	\showindex

	Error Messages
	Option Processing
	Rawtext Mode
	Codeline Index

