
The soul-ori package

Melchior FRANZ

November 17, 2003

Abstract

This article describes the soul-ori package1, which provides h y p h e n -
a t a b l e l e t t e r s p a c i n g (s p a c i n g o u t) , underlining and some
derivatives such as overstriking and highlighting. Although the package is
optimized for LATEX2ε, it also works with Plain TEX and with other flavors
of TEX like, for instance, ConTEXt. By the way, the package name soul

is only a combination of the two macro names \so (space out) and \ul

(underline)—nothing poetic at all.

Contents

1 Typesetting rules 2

2 Short introduction and com-
mon rules 3
2.1 Some things work 3
2.2 . . . others don’t 5
2.3 Troubleshooting 6

3 L e t t e r s p a c i n g 8
3.1 How it works 8
3.2 Some examples 8
3.3 Typesetting caps-and-

small-caps fonts 10
3.4 Typesetting Fraktur . . . 11
3.5 Dirty tricks 11

4 Underlining 12
4.1 Settings 12
4.2 Some examples 13

5 Customization 14
5.1 Adding accents 14
5.2 Adding font commands . 15
5.3 Changing the internal font 15
5.4 The configuration file . . . 16

6 Miscellaneous 16
6.1 Using soul-ori with

other flavors of TEX . . . 16
6.2 Using soul-ori com-

mands for logical markup 17
6.3 Typesetting long words

in narrow columns 19
6.4 Using soul-ori com-

mands in section headings 19

7 How the package works 21
7.1 The kernel 21
7.2 The interface 22
7.3 A driver example 24

8 The implementation 26
8.1 The kernel 28
8.2 The scanner 29
8.3 The analyzer 35
8.4 The l e t t e r s p a c i n g

driver 39
8.5 The caps driver 42
8.6 The underlining driver . . 44
8.7 The overstriking driver . . 47
8.8 The highlighting driver . . 47

1This file has version number 3.0, last revised 2023-18-02.

1

1 Typesetting rules

There are several possibilities to emphasize parts of a paragraph, not all of which
are considered good style. While underlining is commonly rejected, experts dispute
about whether letterspacing should be used or not, and in which cases. If you are
not interested in such debates, you may well skip to the next section.

Theory . . .

To understand the experts’ arguments we have to know about the conception of
page grayness. The sum of all characters on a page represents a certain amount
of grayness, provided that the letters are printed black onto white paper.

Jan Tschichold [10], a well known and recognized typographer, accepts
only forms of emphasizing, which do not disturb this grayness. This is only true of
italic shape, caps, and caps-and-small-caps fonts, but not of ordinary letterspacing,
underlining, bold face type and so on, all of which appear as either dark or light
spots in the text area. In his opinion emphasized text shall not catch the eye when
running over the text, but rather when actually reading the respective words.

Other, less restrictive typographers [11] call this kind of emphasizing ‘inte-
grated’ or ‘aesthetic’, while they describe ‘active’ emphasizing apart from it, which
actually has to catch the reader’s eye. To the latter group belong commonly
despised things like letterspacing, demibold face type and even underlined and
colored text.

On the other hand, Tschichold suggests to space out caps and caps-and-
small-caps fonts on title pages, headings and running headers from 1pt up to 2 pt.
Even in running text legibility of uppercase letters should be improved with slight
letterspacing, since (the Roman) majuscules don’t look right, if they are spaced
like (the Carolingian) minuscules.2

. . . and Practice

However, in the last centuries letterspacing was excessively used, underlining at
least sometimes, because capitals and italic shape could not be used together with
the Fraktur font and other black-letter fonts, which are sometimes also called
“old German” fonts. This tradition is widely continued until today. The same
limitations apply still today to many languages with non-latin glyphs, which is
why letterspacing has a strong tradition in eastern countries where Cyrillic fonts
are used.

The Duden [4], a well known German dictionary, explains how to space out
properly: Punctuation marks are spaced out like letters, except quotation marks
and periods. Numbers are never spaced out. The German syllable -sche is not
spaced out in cases like “der V i r c h o w sche Versuch”3. In the old German
Fraktur fonts the ligatures ch, ck, sz (ß) and tz are not broken within spaced out
text.

While some books follow all these rules [6], others don’t [7]. In fact, most
books in my personal library do not space out commas.

2This suggestion is followed throughout this article, although Prof. Knuth already consid-
ered slight letterspacing with his cmcsc fonts.

3the Virchow experiment

2

2 Short introduction and common rules

The soul-ori package provides five commands that are aimed at emphasizing
text parts. Each of the commands takes one argument that can either be the text
itself or the name of a macro that contains text (e. g. \so\text)4. See table 1 for
a complete command survey.

\so{letterspacing} l e t t e r s p a c i n g
\caps{CAPITALS, Small Capitals} CAPITALS, Small Capitals

\ul{underlining} underlining
\st{overstriking} overstriking
\hl{highlighting} highlighting5

The \hl command does only highlight if the color package was loaded, otherwise
it falls back to underlining.6 The highlighting color is by default yellow, underlines
and overstriking lines are by default black. The colors can be changed using the
following commands:

\setulcolor{red} set underlining color
\setstcolor{green} set overstriking color
\sethlcolor{blue} set highlighting color

\setulcolor{} and \setstcolor{} turn coloring off. There are only few colors
predefined by the color package, but you can easily add custom color definitions.
See the color package documentation [3] for further information.

\usepackage{color,soul}

\definecolor{lightblue}{rgb}{.90,.95,1}

\sethlcolor{lightblue}

...

\hl{this is highlighted in light blue color}

2.1 Some things work . . .

The following examples may look boring and redundant, because they describe
nothing else than common LATEX notation with a few exceptions, but this is only
the half story: The soul-ori package has to pre-process the argument before it
can split it into characters and syllables, and all described constructs are only
allowed because the package explicitly implements them.

§ 1 Accents:
Example: \so{na\"\i␣ve}
Accents can be used naturally. Support for the following accents is built-in:
\‘, \’, \^, \", \~, \=, \., \u, \v, \H, \t, \c, \d, \b, and \r. Additionally,
if the german package [8] is loaded you can also use the " accent command
and write \so{na"ive}. See section 5.1 for how to add further accents.

4See § 25 for some additional information about the latter mode.
5The look of highlighting is nowhere demonstrated in this documentation, because it requires

a Postscript aware output driver and would come out as ugly black bars on other devices, looking
very much like censoring bars. Think of it as the effect of one of those coloring text markers.

6Note that you can also use LATEX’s color package with Plain TEX. See 6.1 for details.

3

§ 2 Quotes:
Example: \so{‘‘quotes’’}
The soul-ori package recognizes the quotes ligatures ‘‘, ’’ and ,,. The
Spanish ligatures !‘ and ?‘ are not recognized and have, thus, to be
written enclosed in braces like in \caps{{!‘}Hola!}.

§ 3 Mathematics:
Example: \so{foox^3bar}
Mathematic formulas are allowed, as long as they are surrounded by $.
Note that the LATEX equivalent \(...\) does not work.

§ 4 Hyphens and dashes:
Example: \so{re-sent}
Explicit hyphens as well as en-dashes (--), em-dashes (---) and the
\slash command work as usual.

§ 5 Newlines:
Example: \so{new\\line}
The \\ command fills the current line with white space and starts a new
line. Spaces or linebreaks afterwards are ignored. Unlike the original
LATEX command soul-ori’s version does not handle optional parameters
like in *[1ex].

§ 6 Breaking lines:
Example: \so{foo\linebreak␣bar}
The \linebreak command breaks the line without filling it with white
space at the end. soul-ori’s version does not handle optional parameters
like in \linebreak[1]. \break can be used as a synonym.

§ 7 Unbreakable spaces:
Example: \so{don’t~break}
The ~ command sets an unbreakable space.

§ 8 Grouping:
Example: \so{Virchow{sche}}
A pair of braces can be used to let a group of characters be seen as one
entity, so that soul-ori does for instance not space it out. The contents
must, however, not contain potential hyphenation points. (See § 9)

§ 9 Protecting:
Example: \so{foo␣\mbox{little}␣bar}
An \mbox also lets soul-ori see the contents as one item, but these may
even contain hyphenation points. \hbox can be used as a synonym.

§ 10 Omitting:
Example: \so{\soulomit{foo}}
The contents of \soulomit bypass the soul core and are typeset as is,
without being letterspaced or underlined. Hyphenation points are allowed
within the argument. The current font remains active, but can be over-
ridden with \normalfont etc.

4

§ 11 Font switching commands:
Example: \so{foo␣\texttt{bar}}
All standard TEX and LATEX font switching commands are allowed, as well
as the yfonts package [9] font commands like \textfrak etc. Further
commands have to be registered using the \soulregister command (see
section 5.2).

§ 12 Breaking up ligatures:
Example: \ul{Auf{}lage}
Use {} or \null to break up ligatures like ‘fl’ in \ul, \st and \hl argu-
ments. This doesn’t make sense for \so and \caps, though, because they
break up every unprotected (ungrouped/unboxed) ligature, anyway, and
would then just add undesirable extra space around the additional item.

2.2 . . . others don’t

Although the new soul-ori is much more robust and forgiving than versions prior
to 2.0, there are still some things that are not allowed in arguments. This is due
to the complex engine, which has to read and inspect every character before it can
hand it over to TEX’s paragraph builder.

§ 20 Grouping hyphenatable material:
Example: \so{foo␣{little}␣bar}
Grouped characters must not contain hyphenation points. Instead of
\so{foo {little}} write \so{foo \mbox{little}}. You get a ‘Re-

construction failed’ error and a black square like in the DVI file
where you violated this rule.

§ 21 Discretionary hyphens:
Example: \so{Zu\discretionary{k-}{}{c}ker}
The argument must not contain discretionary hyphens. Thus, you have
to handle cases like the German word Zu\discretionary{k-}{}{c}ker

by yourself.

§ 22 Nested soul commands:
Example: \ul{foo␣\so{bar}␣baz}
soul-ori commands must not be nested. If you really need such, put the
inner stuff in a box and use this box. It will, of course, not get broken
then.

\newbox\anyboxname

\sbox\anyboxname{ \so{the worst} }

\ul{This is by far{\usebox\anyboxname}example!}

yields:
This is by far t h e w o r s t example!

§ 23 Leaking font switches:
Example: \def\foo{\bf␣bar}␣\so{\foo␣baz}
A hidden font switching command that leaks into its neighborship
causes a ‘Reconstruction failed’ error. To avoid this either regis-
ter the ‘container’ (\soulregister{\foo}{0}), or limit its scope as in
\def\foo{{\bf bar}}. Note that both solutions yield slightly different
results.

5

§ 24 Material that needs expansion:
Example: \so{\romannumeral\year}
In this example \so would try to put space between \romannumeral

and \year, which can, of course, not work. You have to expand
the argument before you feed it to soul-ori, or even better: Wrap
the material up in a command sequence and let soul-ori expand it:
\def\x{\romannumeral\year} \so\x. soul-ori tries hard to expand
enough, yet not too much.

§ 25 Unexpandable material in command sequences:
Example: \def\foo{\bar}␣\so\foo
Some macros might not be expandable in an \edef definition7 and have
to be protected with \noexpand in front. This is automatically done for
the following tokens: ~, \,, \TeX, \LaTeX, \S, \slash, \textregistered,
\textcircled, and \copyright, as well as for all registered fonts and
accents. Instead of putting \noexpand manually in front of such com-
mands, as in \def\foo{foo {\noexpand\bar} bar} \so\foo, you can
also register them as special (see section 5.2).

§ 26 Other weird stuff:
Example: \so{foo␣\verb|\bar|␣baz}
soul-ori arguments must not contain LATEX environments, command de-
finitions, and fancy stuff like \vadjust. soul-ori’s \footnote command
replacement does not support optional arguments. As long as you are
writing simple, ordinary ‘horizontal’ material, you are on the safe side.

2.3 Troubleshooting

Unfortunately, there’s just one helpful error message provided by the soul-ori

package, that actually describes the underlying problem. All other messages are
generated directly by TEX and show the low-level commands that TEX wasn’t
happy with. They’ll hardly point you to the violated rule as described in the
paragraphs above. If you get such a mysterious error message for a line that
contains a soul-ori statement, then comment that statement out and see if the
message still appears. ‘Incomplete \ifcat’ is such a non-obvious message. If
the message doesn’t appear now, then check the argument for violations of the
rules as listed in §§ 20–26.

2.3.1 ‘Reconstruction failed’

This message appears, if § 20 or § 23 was violated. It is caused by the fact that the
reconstruction pass couldn’t collect tokens with an overall width of the syllable
that was measured by the analyzer. This does either occur when you grouped
hyphenatable text or used an unregistered command that influences the syllable
width. Font switching commands belong to the latter group. See the above cited
sections for how to fix these problems.

7Try \edef\x{\copyright}. Yet \copyright works in soul-ori arguments, because it is
explicitly taken care of by the package

6

page

\so{letterspacing} 8 l e t t e r s p a c i n g
\caps{CAPITALS, Small Capitals} 10 CAPITALS, Small Capitals

\ul{underlining} 12 underlining
\st{striking out} 12 striking out
\hl{highlighting} 12 highlighting

\soulaccent{\cs} 14 add accent \cs to accent list
\soulregister{\cs}{0} 15 register command \cs

\sloppyword{text} 19 typeset text with stretchable spaces

\sodef\cs{1em}{2em}{3em} 8 define new spacing command \cs

\resetso 8 reset \so dimensions
\capsdef{////}{1em}{2em}{3em}∗ 10 define (default) \caps data entry

\capssave{name}∗ 10 save \caps database under name name

\capsselect{name}∗ 10 restore \caps database of name name

\capsreset∗ 10 clear caps database
\setul{1ex}{2ex} 12 set \ul dimensions

\resetul 12 reset \ul dimensions
\setuldepth{y} 12 set underline depth to depth of an y

\setuloverlap{1pt} 13 set underline overlap width
\setulcolor{red} 12 set underline color

\setstcolor{green} 13 set overstriking color
\sethlcolor{blue} 13 set highlighting color

Table 1: List of all available commands. The number points to the page where
the command is described. Those marked with a little asterisk are only available
when the package is used together with LATEX, because they rely on the New Font
Selection Scheme (NFSS) used in LATEX.

7

2.3.2 Missing characters

If you have redefined the internal font as described in section 5.3, you may no-
tice that some characters are omitted without any error message being shown.
This happens if you have chosen, let’s say, a font with only 128 characters like
the cmtt10 font, but are using characters that aren’t represented in this font,
e. g. characters with codes greater than 127.

3 L e t t e r s p a c i n g

3.1 How it works

The base macro for letterspacing is called \so. It typesets the given argument\so

with inter-letter space between every two characters, inner space between words
and outer space before and after the spaced out text. If we let “·” stand for inter-
letter space, “∗” for inner spaces and “•” for outer spaces, then the input on the
left side of the following table will yield the schematic output on the right side:

1. XX\so{aaa␣bbb␣ccc}YY XXa·a·a∗b·b·b∗c·c·cYY
2. XX␣\so{aaa␣bbb␣ccc}␣YY XX•a·a·a∗b·b·b∗c·c·c•YY
3. XX␣{\so{aaa␣bbb␣ccc}}␣YY XX•a·a·a∗b·b·b∗c·c·c•YY
4. XX␣\null{\so{aaa␣bbb␣ccc}}{}␣YY XX␣a·a·a∗b·b·b∗c·c·c␣YY

Case 1 shows how letterspacing macros (\so and \caps) behave if they aren’t
following or followed by a space: they omit outer space around the soul-ori

statement. Case 2 is what you’ll mostly need—letterspaced text amidst running
text. Following and leading space get replaced by outer space. It doesn’t matter
if there are opening braces before or closing braces afterwards. soul-ori can see
through both of them (case 3). Note that leading space has to be at least 5sp wide
to be recognized as space, because LATEX uses tiny spaces generated by \hskip1sp

as marker. Case 4 shows how to enforce normal spaces instead of outer spaces:
Preceding space can be hidden by \kern0pt or \null or any character. Following
space can also be hidden by any token, but note that a typical macro name like
\relax or \null would also hide the space thereafter.

The values are predefined for typesetting facsimiles mainly with Fraktur fonts.
You can define your own spacing macros or overwrite the original \so meaning
using the macro \sodef:\sodef

\sodef⟨cmd⟩{⟨font⟩}{⟨inter-letter space⟩}{⟨inner space⟩}{⟨outer space⟩}

The space dimensions, all of which are mandatory, should be defined in terms of
em letting them grow and shrink with the respective fonts.

\sodef\an{}{.4em}{1em plus1em}{2em plus.1em minus.1em}

After that you can type ‘\an{example}’ to get ‘e x a m p l e’. The \resetso\resetso

command resets \so to the default values.

3.2 Some examples

8

Ordinary text. \so{electrical␣industry}

e l e c t r i c a l i n d u s t r y
e l e c -
t r i -
c a l
i n -
d u s -
t r y

Use \- to mark hyphenation
points.

\so{man\-u\-script}

m a n u s c r i p t
m a n -
u -
s c r i p t

Accents are recognized. \so{le␣th\’e\^atre}

l e t h é â t r e
l e
t h é â t r e

\mbox and \hbox protect
material that contains
hyphenation points. The
contents are treated as one,
unbreakable entity.

\so{just␣an␣\mbox{example}}

j u s t a n example
j u s t
a n
example

Punctuation marks are spaced
out, if they are put into the
group.

\so{inside.}␣\&␣\so{outside}.

i n s i d e . & o u t s i d e.
i n -
s i d e .
&
o u t -
s i d e.

Space-out skips may be
removed by typing \<. It’s,
however, desirable to put the
quotation marks out of the
argument.

\so{‘‘\<Pennsylvania\<’’}

“P e n n s y l v a n i a”
“P e n n -
s y l -
v a -
n i a”

Numbers should never be
spaced out.

\so{1\<3␣December␣{1995}}

13 D e c e m b e r 1995
13
D e -
c e m -
b e r
1995

Explicit hyphens like -, --
and --- are recognized.
\slash outputs a slash and
enables TEX to break the line
afterwards.

\so{input\slash␣output}

i n p u t / o u t p u t
i n -
p u t /
o u t -
p u t

To keep TEX from breaking
lines between the hyphen and
‘jet’ you have to protect the
hyphen. This is no soul-ori

restriction but normal TEX
behavior.

\so{\dots␣and␣\mbox{-}jet}

. . . a n d - j e t
. . . a n d
- j e t

9

The ~ command inhibits line
breaks.

\so{unbreakable~space}

u n b r e a k a b l e s p a c e
u n -
b r e a k -
a b l e s p a c e

\\ works as usual. Additional
arguments like * or vertical
space are not accepted,
though.

\so{broken\\line}

b r o k e n
l i n e

b r o -
k e n
l i n e

\break breaks the line without
filling it with white space.

\so{pretty␣awful\break␣test}

p r e t t y a w f u l
t e s t

p r e t t y
a w -
f u l
t e s t

3.3 Typesetting capitals-and-small-capitals fonts

There is a special letterspacing command called \caps, which differs from \so\caps

in that it switches to caps-and-small-caps font shape, defines only slight spacing
and is able to select spacing value sets from a database. This is a requirement
for high-quality typesetting [10]. The following lines show the effect of \caps in
comparison with the normal textfont and with small-capitals shape:

\normalfont DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT
\scshape DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT

\caps DONAUDAMPFSCHIFFAHRTSGESELLSCHAFT

The \caps font database is by default empty, i. e., it contains just a single default
entry, which yields the result as shown in the example above. New font entries
may be added on top of this list using the \capsdef command, which takes five\capsdef

arguments: The first argument describes the font with encoding, family, series,
shape, and size,8 each optionally (e. g. OT1/cmr/m/n/10 for this very font, or only
/ppl///12 for all palatino fonts at size 12 pt). The size entry may also contain a
size range (5-10), where zero is assumed for an omitted lower boundary (-10) and
a very, very big number for an omitted upper boundary (5-). The upper boundary
is not included in the range, so, in the example below, all fonts with sizes greater or
equal 5 pt and smaller than 15 pt are accepted (5 pt ≤ size < 15 pt). The second
argument may contain font switching commands such as \scshape, it may as well
be empty or contain debugging commands (e. g. \message{*}). The remaining
three, mandatory arguments are the spaces as described in section 3.1.

\capsdef{T1/ppl/m/n/5-15}{\scshape}{.16em}{.4em}{.2em}

The \caps command goes through the data list from top to bottom and picks up
the first matching set, so the order of definition is essential. The last added entry
is examined first, while the pre-defined default entry will be examined last and
will match any font, if no entry was taken before.

To override the default values, just define a new default entry using the iden-
tifier {////}. This entry should be defined first, because no entry after it can be
reached.

The \caps database can be cleared with the \capsreset command and will\capsreset

only contain the default entry thereafter. The \capssave command saves the\capssave

8as defined by the NFSS, the “New Font Selection Scheme”

10

whole current database under the given name. \capsselect restores such a data-\capsselect

base. This allows to predefine different groups of \caps data sets:

\capsreset

\capsdef{/cmss///12}{}{12pt}{23pt}{34pt}

\capsdef{/cmss///}{}{1em}{2em}{3em}

...

\capssave{wide}

%---------------------------------------

\capsreset

\capsdef{/cmss///}{}{.1em}{.2em}{.3em}

...

\capssave{narrow}

%---------------------------------------

{\capsselect{wide}

\title{\caps{Yet Another Silly Example}}

}

See the ‘example.cfg’ file for a detailed example. If you have defined a bunch of
sets for different fonts and sizes, you may lose control over what fonts are used
by the package. With the package option capsdefault selected, \caps prints itscapsdefault
argument underlined, if no set was specified for a particular font and the default
set had to be used.

3.4 Typesetting Fraktur

Black letter fonts9 deserve some additional considerations. As stated in section 1,
the ligatures ch, ck, sz (\ss), and tz have to remain unbroken in spaced out
Fraktur text. This may look strange at first glance, but you’ll get used to it:

\textfrak{\so{S{ch}u{tz}vorri{ch}tung}}

You already know that grouping keeps the soul mechanism from separating such
ligatures. This is quite important for s:, a*, and "a. As hyphenation is stronger
than grouping, especially the sz may cause an error, if hyphenation happens to
occur between the letters s and z. (TEX hyphenates the German word auszer

wrongly like aus-zer instead of like au-szer, because the German hyphenation
patterns do, for good reason, not see sz as ‘\ss’.) In such cases you can protect
tokens with the sequence e. g. \mbox{sz} or a properly defined command. The
\ss command, which is defined by the yfonts package, and similar commands
will suffice as well.

3.5 Dirty tricks

Narrow columns are hard to set, because they don’t allow much spacing flexibility,
hence long words often cause overfull boxes. A macro could use \so to insert
stretchability between the single characters. Table 2 shows some text typeset with
such a macro at the left side and under plain conditions at the right side, both
with a width of 6 pc.

9See the great black letter fonts, which Yannis Haralambous kindly provided, and the
oldgerm and yfonts package [9] as their LATEX interfaces.

11

Some magazines
and newspapers
prefer this kind
of spacing
because it
reduces
hyphenation
problems to a
minimum.
Unfortunately,
such paragraphs
aren’t especially
beautiful.

Some magazines
and newspapers
prefer this kind
of spac ing be-
cause it reduces
hy p h e n a t i o n
prob l ems to a
minimum. Un-
f o r t u n a t e l y,
such paragraphs
aren’t especially
beautiful.

Some magazines
and newspapers pre-
fer this kind of spac-
ing because it re-
duces hyphenation
problems to a min-
imum. Unfortu-
nately, such para-
graphs aren’t es-
pecially beautiful.

Table 2: Ragged-right, magazine style (using soul-ori), and block-aligned in
comparison. But, frankly, none of them is really acceptable. (Don’t do this at
home, children!)

4 Underlining

The underlining macros are my answer to Prof. Knuth’s exercise 18.26 from his
TEXbook [5]. :-) Most of what is said about the macro \ul is also true of the\ul

striking out macro \st and the highlighting macro \hl, both of which are in fact\st

\hl derived from the former.

4.1 Settings

4.1.1 Underline depth and thickness

The predefined underline depth and thickness work well with most fonts. They
can be changed using the macro \setul.\setul

\setul{⟨underline depth⟩}{⟨underline thickness⟩}

Either dimension can be omitted, in which case there has to be an empty pair
of braces. Both values should be defined in terms of ex, letting them grow and
shrink with the respective fonts. The \resetul command restores the standard\resetul

values.
Another way to set the underline depth is to use the macro \setuldepth.\setuldepth

It sets the depth such that the underline’s upper edge lies 1 pt beneath the given
argument’s deepest depth. If the argument is empty, all letters—i. e. all characters
whose \catcode currently equals 11—are taken. Examples:

\setuldepth{ygp}

\setuldepth\strut

\setuldepth{}

4.1.2 Line color

The underlines are by default black. The color can be changed by using the
\setulcolor command. It takes one argument that can be any of the color spec-\setulcolor

12

ifiers as described in the color package. This package has to be loaded explicitly.

\documentclass{article}

\usepackage{color,soul}

\definecolor{darkblue}{rgb}{0,0,0.5}

\setulcolor{darkblue}

\begin{document}

...

\ul{Cave: remove all the underlines!}

...

\end{document}

The colors for overstriking lines and highlighting are likewise set with \setstcolor\setstcolor

(default: black) and \sethlcolor (default: yellow). If the color package wasn’t\sethlcolor

loaded, underlining and overstriking color are black, while highlighting is replaced
by underlining.

4.1.3 The dvips problem

Underlining, striking out and highlighting build up their lines with many short
line segments. If you used the ‘dvips’ program with default settings, you would
get little gaps on some places, because the maxdrift parameter allows the single
objects to drift this many pixels from their real positions.

There are two ways to avoid the problem, where the soul-ori package chooses
the second by default:

1. Set the maxdrift value to zero, e. g.: dvips -e 0 file.dvi. This is proba-
bly not a good idea, since the letters may then no longer be spaced equally
on low resolution printers.

2. Let the lines stick out by a certain amount on each side so that they overlap.
This overlap amount can be set using the \setuloverlap command. It is\setuloverlap

set to 0.25 pt by default. \setuloverlap{0pt} turns overlapping off.

4.2 Some examples

Ordinary text. \ul{electrical␣industry}

electrical industry
elec-
tri-
cal
in-
dus-
try

Use \- to mark hyphenation
points.

\ul{man\-u\-script}

manuscript
man-
u-
script

Accents are recognized. \ul{le␣th\’e\^atre}

le théâtre
le
théâtre

13

\mbox and \hbox protect
material that contains
hyphenation points. The
contents are treated as one,
unbreakable entity.

\ul{just␣an␣\mbox{example}}

just an example
just
an
example

Explicit hyphens like -, --
and --- are recognized.
\slash outputs a slash and
enables TEX to break the line
afterwards.

\ul{input\slash␣output}

input/output
in-
put/
out-
put

To keep TEX from breaking
lines between the hyphen and
‘jet’ you have to protect the
hyphen. This is no soul-ori

restriction but normal TEX
behavior.

\ul{\dots␣and␣\mbox{-}jet}

. . . and -jet
. . . and
-jet

The ~ command inhibits line
breaks.

\ul{unbreakable~space}

unbreakable space
un-
break-
able space

\\ works as usual. Additional
arguments like * or vertical
space are not accepted,
though.

\ul{broken\\line}

broken
line

bro-
ken
line

\break breaks the line without
filling it with white space.

\ul{pretty␣awful\break␣test}

pretty awful
test

pretty
aw-
ful
test

Italic correction needs to be
set manually.

\ul{foo␣\emph{bar\/}␣baz}

foo bar baz
foo
bar
baz

5 Customization

5.1 Adding accents

The soul-ori scanner generally sees every input token separately. It has to be
taught that some tokens belong together. For accents this is done by registering
them via the \soulaccent macro.\soulaccent

\soulaccent{⟨accent command⟩}

The standard accents, however, are already pre-registered: \‘, \’, \^, \", \~, \=,
\., \u, \v, \H, \t, \c, \d, \b, and \r. If used together with the german package,
soul-ori automatically adds the " command. Let’s assume you have defined \%

14

to put some weird accent on the next character. Simply put the following line into
your soul.cfg file (see section 5.4):

\soulaccent{\%}

Note that active characters like the " command have already to be \active when
they are stored or they won’t be recognized later. This can be done temporarily,
as in {\catcode\‘"\active\soulaccent{"}}.

5.2 Adding font commands

To convince soul-ori not to feed font switching (or other) commands to the
analyzer, but rather to execute them immediately, they have to be registered, too.
The \soulregister macro takes the name of a command name and either 0 or 1\soulregister

for the number of arguments:

\soulregister{⟨command name⟩}{⟨number of arguments⟩}

If \bf and \emph weren’t already registered, you would write the following into
your soul.cfg configuration file:

\soulregister{\bf}{0} % {\bf foo}

\soulregister{\emph}{1} % \emph{bar}

All standard TEX and LATEX font commands, as well as the yfonts commands are
already pre-registered:

\em, \rm, \bf, \it, \tt, \sc, \sl, \sf, \emph, \textrm,

\textsf, \texttt, \textmd, \textbf, \textup, \textsl,

\textit, \textsc, \textnormal, \rmfamily, \sffamily,

\ttfamily, \mdseries, \upshape, \slshape, \itshape,

\scshape, \normalfont, \tiny, \scriptsize, \footnotesize,

\small, \normalsize, \large, \Large, \LARGE, \huge, \Huge,

\MakeUppercase, \textsuperscript, \footnote,

\textfrak, \textswab, \textgoth, \frakfamily,

\swabfamily, \gothfamily

You can also register other commands as fonts, so the analyzer won’t see them.
This may be necessary for some macros that soul-ori refuses to typeset correctly.
But note, that \so and \caps won’t put their letter-skips around then.

5.3 Changing the internal font

The soul-ori package uses the ectt1000 font while it analyzes the syllables. This
font is used, because it has 256 mono-spaced characters without any kerning. It
belongs to Jörg Knappen’s EC-fonts, which should be part of every modern
TEX installation. If TEX reports “I can’t find file ‘ectt1000’” you don’t
seem to have this font installed. It is recommended that you install at least
the file ectt1000.tfm which has less than 1.4 kB. Alternatively, you can let the
soul-ori package use the cmtt10 font that is part of any installation, or some
other mono-spaced font:

\font\SOUL@tt=cmtt10

15

Note, however, that soul-ori does only handle characters, for which the internal
font has a character with the same character code. As cmtt10 contains only
characters with codes 0 to 127, you can’t typeset characters with codes 128 to 255.
These 8-bit character codes are used by many fonts with non-ascii glyphs. So the
cmtt10 font will, for example, not work for T2A encoded cyrillic characters.

5.4 The configuration file

If you want to change the predefined settings or add new features, then create
a file named ‘soul.cfg’ and put it in a directory, where TEX can find it. This
configuration file will then be loaded at the end of the soul.sty file, so you
may redefine any settings or commands therein, select package options and even
introduce new ones. But if you intend to give your documents to others, don’t
forget to give them the required configuration files, too! That’s how such a file
could look like:

% define macros for logical markup

\sodef\person{\scshape}{0.125em}{0.4583em}{0.5833em}

\sodef\SOUL@@@versal{\upshape}{0.125em}{0.4583em}{0.5833em}

\DeclareRobustCommand*\versal[1]{%

\MakeUppercase{\SOUL@@@versal{#1}}%

}

% load the color package and set

% a different highlighting color

\RequirePackage{color}

\definecolor{lightblue}{rgb}{.90,.95,1}

\sethlcolor{lightblue}

\endinput

You can safely use the \SOUL@@@ namespace for internal macros—it won’t be used
by the soul-ori package in the future.

6 Miscellaneous

6.1 Using soul-ori with other flavors of TEX

This documentation describes how to use soul-ori together with LATEX2ε, for
which it is optimized. It works, however, with all other flavors of TEX, too. There
are just some minor restrictions for Non-LATEX use:

The \caps command doesn’t use a database, it is only a dumb definition with
fixed values. It switches to \capsfont, which—unless defined explicitly like in
the following example—won’t really change the used font at all. The commands
\capsreset and \capssave do nothing.

\font\capsfont=cmcsc10

\caps{Tschichold}

16

None of the commands are made ‘robust’, so they have to be explicitly protected in
fragile environments like in \write statements. To make use of colored underlines
or highlighting you have to use the color package wrapper from CTAN10, instead
of the color package directly:

\input color

\input soul.sty

\hl{highlighted}

\bye

The capsdefault package option is mapped to a simple command \capsdefault.\capsdefault

6.2 Using soul-ori commands for logical markup

It’s generally a bad idea to use font style commands like \textsc in running
text. There should always be some reasoning behind changing the style, such as
“names of persons shall be typeset in a caps-and-small-caps font”. So you declare
in your text just that some words are the name of a person, while you define in
the preamble or, even better, in a separate style file how to deal with persons:

\newcommand*\person{\textsc}

...

‘‘I think it’s a beautiful day to go to the zoo and feed

the ducks. To the lions.’’ --~\person{Brian Kantor}

It’s quite simple to use soul-ori commands that way:

\newcommand\comment*{\ul} % or \let\comment=\ul

\sodef\person{\scshape}{0.125em}{0.4583em}{0.5833em}

Letterspacing commands like \so and \caps have to check whether they are fol-
lowed by white space, in which case they replace that space by outer space. Note
that soul-ori does look through closing braces. Hence you can conveniently bury
a soul-ori command within another macro like in the following example. Use
any other token to hide following space if necessary, for example the \null macro.

\DeclareRobustCommand*\versal[1]{%

\MakeUppercase{\SOUL@@@versal{#1}}%

}

\sodef\SOUL@@@versal{\upshape}{0.125em}{0.4583em}{0.5833em}

But what if the soul-ori command is for some reason not the last one in that
macro definition and thus cannot look ahead at the following token?

\newcommand*\somsg[1]{\so{#1}\message{#1}}

...

foo \somsg{bar} baz % wrong spacing after ‘bar’!

In this case you won’t get the following space replaced by outer space because when
soul-ori tries to look ahead, it only sees the token \message and consequently
decides that there is no space to replace. You can get around this by explicitly
calling the space scanner again.

10CTAN:/macros/plain/graphics/{miniltx.tex,color.tex}

17

\newcommand*\somsg[1]{{%

\so{#1}%

\message{bar}%

\let\\\SOUL@socheck

\\%

}}

However, \SOUL@socheck can’t be used directly, because it would discard any
normal space. \\ doesn’t have this problem. The additional pair of braces avoids
that its definition leaks out of this macro. In the example above you could, of
course, simply have put \message in front, so you hadn’t needed to use the scanner
macro \SOUL@socheck at all.

Many packages do already offer logical markup commands that default to some
standard LATEX font commands or to \relax. One example is the jurabib pack-
age [1], which makes the use of soul-ori a challenge. This package implements
lots of formatting macros. Let’s have a look at one of them, \jbauthorfont,
which is used to typeset author names in citations. The attempt to simply define
\let\jbauthorfont\caps fails, because the macro isn’t directly applied to the au-
thor name as in \jbauthorfont{Don Knuth}, but to another command sequence:
\jbauthorfont{\jb@@author}. Not even \jb@@author contains the name, but
instead further commands that at last yield the requested name. That’s why we
have to expand the contents first. This is quite tricky, because we must not ex-
pand too much, either. Fortunately, we can offer the contents wrapped up in yet
another macro, so that soul-ori knows that it has to use its own macro expansion
mechanism:

\renewcommand*\jbauthorfont[1]{{%

\def\x{#1}%

\caps\x

}}

Some additional kerning after \caps\x wouldn’t hurt, because the look-ahead
scanner is blinded by further commands that follow in the jurabib package. Now
we run into the next problem: cited names may contain commands that must not
get expanded. We have to register them as special command:

\soulregister\jbbtasep{0}

...

But such registered commands bypass soul-ori’s kernel and we don’t get the cor-
rect spacing before and afterwards. So we end up redefining \jbbtasep, whereby
you should, of course, use variables instead of numbers:

\renewcommand*\jbbtasep{%

\kern.06em

\slash

\hskip.06em

\allowbreak

}

Another problem arises: bibliography entries that must not get teared apart are
supposed to be enclosed in additional braces. This, however, won’t work with
soul-ori because of § 20. A simple trick will get you around that problem: define
a dummy command that only outputs its argument, and register that command:

18

\newcommand*\together[1]{#1}

\soulregister\together{1}

Now you can write “Author = {\together{Don Knuth}}” and jurabib won’t
dare to reorder the parts of the name. And what if some name shouldn’t get
letterspaced at all? Overriding a conventional font style like \textbf that was
globally set is trivial, you just have to specify the style that you prefer in that very
bibliography entry. In our example, if we wanted to keep soul-ori from letterspac-
ing a particular entry, although they are all formatted by our \jbauthorfont and
hence fed to \caps, we’d use the following construction:

Author = {\soulomit{\normalfont\huge Donald E. Knuth}}

The jurabib package is probably one of the more demanding packages to collab-
orate with soul-ori. Everything else can just become easier.

6.3 Typesetting long words in narrow columns

Narrow columns are best set flushleft, because not even the best hyphenation
algorithm can guarantee acceptable line breaks without overly stretched spaces.
However, in some rare cases one may be forced to typeset block aligned. When
typesetting in languages like German, where there are really long words, the
\sloppyword macro might help a little bit. It adds enough stretchability between\sloppyword

the single characters to make the hyphenation algorithm happy, but is still not as
ugly as the example in section 3.5 demonstrates. In the following example the left
column was typeset as “Die \sloppyword{Donau...novelle} wird ...”:

Die Donaudampfschiff-
fahrtsgesellschaftska-
pitänswitwenpensions-
gesetznovelle wird mit
sofortiger Wirkung außer
Kraft gesetzt.

Die Donaudampfschiff-
fahrtsgesellschaftska-
pitänswitwenpensions-
gesetznovelle wird mit
sofortiger Wirkung außer
Kraft gesetzt.

6.4 Using soul-ori commands in section headings

Letterspacing was often used for section titles in the past, mostly centered and
with a closing period. The following example shows how to achieve this using the
titlesec package [2]:

\newcommand*\periodafter[2]{#1{#2}.}

\titleformat{\section}[block]

{\normalfont\centering}

{\thesection.}

{.66em}

{\periodafter\so}

...

\section{Von den Maassen und Maassst\"aben}

This yields the following output:

1. V o n d e n M a a s s e n u n d M a a s s s t ä b e n.

19

The \periodafter macro adds a period to the title, but not to the entry in the
table of contents. It takes the name of a command as argument, that shall be
applied to the title, for example \so. Here’s a more complicated and complete
example:

\documentclass{article}

\usepackage[latin1]{inputenc}

\usepackage[T1]{fontenc}

\usepackage{german,soul}

\usepackage[indentfirst]{titlesec}

\newcommand*\sectitle[1]{%

\MakeUppercase{\so{#1}.}\\[.66ex]

\rule{13mm}{.4pt}}

\newcommand*\periodafter[2]{#1{#2.}}

\titleformat{\section}[display]

{\normalfont\centering}

{\S. \thesection.}

{2ex}

{\sectitle}

\titleformat{\subsection}[block]

{\normalfont\centering\bfseries}

{\thesection.}

{.66em}

{\periodafter\relax}

\begin{document}

\section{Von den Maassen und Maassst\"aben}

\subsection{Das L\"angenmaass im Allgemeinen}

Um L\"angen genau messen und vergleichen zu k\"onnen,

bedarf es einer gewissen, bestimmten Einheit, mit der

man untersucht, wie oft sie selbst, oder ihre Theile,

in der zu bestimmenden L\"ange enthalten sind.

...

\end{document}

This example gives you roughly the following output, which is a facsimile from [6].

§. 1.

V O N D E N M A A S S E N U N D M A A S S S T Ä B E N.

1. Das Längenmaass im Allgemeinen.

Um Längen genau messen und vergleichen zu können, bedarf es einer gewis-
sen, bestimmten Einheit, mit der man untersucht, wie oft sie selbst, oder ihre
Theile, in der zu bestimmenden Länge enthalten sind.

20

Note that the definition of \periodafter decides if the closing period shall be
spaced out with the title (1), or follow without space (2):

1. \newcommand*\periodafter[2]{#1{#2.}}

2. \newcommand*\periodafter[2]{#1{#2}.}

If you need to underline section titles, you can easily do it with the help of the
titlesec package. The following example underlines the section title, but not the
section number:

\titleformat{\section}

{\LARGE\titlefont}

{\thesection}

{.66em}

{\ul}

The \titlefont command is provided by the “KOMA script” package. You
can write \normalfont\sffamily\bfseries instead. The following example does
additionally underline the section number:

\titleformat{\section}

{\LARGE\titlefont}

{\ul{\thesection{\kern.66em}}}

{0pt}

{\ul}

7 How the package works

7.1 The kernel

L e t t e r s p a c i n g , underlining, striking out and highlighting use the same
kernel. It lets a word scanner run over the given argument, which inspects every
token. If a token is a command registered via \soulregister, it is executed
immediately. Other tokens are only counted and trigger some action when a
certain number is reached (quotes and dashes). Three subsequent ‘-’, for example,
trigger \SOUL@everyexhyphen{---}. A third group leads to special actions, like
\mbox that starts reading-in a whole group to protect its contents and let them be
seen as one entity. All other tokens, mostly characters and digits, are collected in
a word register, which is passed to the analyzer, whenever a whole word was read
in.

The analyzer typesets the word in a 1 sp (= 1
65536 pt) wide \vbox, hence en-

couraging TEX to break lines at every possible hyphenation point. It uses the
mono-spaced \SOUL@tt font (ectt1000), so as to avoid any inter-character kern-
ing. Now the \vbox is decomposed splitting off \hbox after \hbox from the bot-
tom. All boxes, each of which contains one syllable, are pushed onto a stack,
which is provided by TEX’s grouping mechanism. When returning from the recur-
sion, box after box is fetched from the stack, its width measured and fed to the
“reconstructor”.

This reconstruction macro (\SOUL@dosyllable) starts to read tokens from the
just analyzed word until the given syllable width is obtained. This is repeated for
each syllable. Every time the engine reaches a relevant state, the corresponding
driver macro is executed and, if necessary, provided with some data. There is a

21

macro that is executed for each token, one for each syllable, one for each space
etc.

The engine itself doesn’t know how to letterspace or to underline. It just tells
the selected driver about the structure of the given argument. There’s a default
driver (\SOUL@setup) that does only set the interface macros to a reasonable
default state, but doesn’t really do anything. Further drivers can safely inherit
these settings and only need to redefine what they want to change.

7.2 The interface

7.2.1 The registers

The package offers eight interface macros that can be used to define the required
actions. Some of the macros receive data as macro parameter or in special token
or dimen registers. Here is a list of all available registers:

\SOUL@token This token register contains the current token.
It has to be used as \the\SOUL@token. The
macro \SOUL@gettoken reads the next token into
\SOUL@token and can be used in any interface
macro. If you don’t want to lose the old mean-
ing, you have to save it explicitly. \SOUL@puttoken
pushes the token back into the queue, without
changing \SOUL@token. You can only put one token
back, otherwise you get an error message.

\SOUL@lasttoken This token register contains the last token.

\SOUL@syllable This token register contains all tokens that were al-
ready collected for the current syllable. When used
in \SOUL@everysyllable, it contains the whole syl-
lable.

\SOUL@charkern This dimen register contains the kerning value be-
tween the current and the next character. Since
most character pairs don’t require a kerning value
to be applied and the output in the logfile shouldn’t
be cluttered with \kern0pt it is recommended to
write \SOUL@setkern\SOUL@charkern, which sets
kerning for non-zero values only.

\SOUL@hyphkern This dimen register contains the kerning value be-
tween the current character and the hyphen char-
acter or, when used in \SOUL@everyexhyphen, the
kerning between the last character and the explicit
hyphen.

7.2.2 The interface macros

The following list describes each of the interface macros and which registers it can
rely on. The mark between label and description will be used in section 7.2.3 to
show when the macros are executed. The addition #1 means that the macro takes
one argument.

22

\SOUL@preamble P executed once at the beginning

\SOUL@postamble E executed once at the end

\SOUL@everytoken T executed after scanning a token; It gets that to-
ken in \SOUL@token and has to care for insert-
ing the kerning value \SOUL@charkern between
this and the next character. To look at the next
character, execute \SOUL@gettoken, which replaces
\SOUL@token by the next token. This token has to
be put back into the queue using \SOUL@puttoken.

\SOUL@everysyllable S This macro is executed after scanning a whole syl-
lable. It gets the syllable in \SOUL@syllable.

\SOUL@everyhyphen − This macro is executed at every implicit hyphen-
ation point. It is responsible for setting the hy-
phen and will likely do this in a \discretionary

statement. It has to care about the kerning values.
The registers \SOUL@lasttoken, \SOUL@syllable,
\SOUL@charkern and \SOUL@hyphkern contain use-
ful information. Note that \discretionary inserts
\exhyphenpenalty if the first part of the discre-
tionary is empty, and \hyphenpenalty else.

\SOUL@everyexhyphen#1 = This macro is executed at every explicit hyphen-
ation point. The hyphen ‘character’ (one of hy-
phen, en-dash, em-dash or \slash) is passed as
parameter #1. A minimal implementation would
be {#1\penalty\exhyphenpenalty}. The kerning
value between the last character and the hyphen is
passed in \SOUL@hyphkern, that between the hy-
phen and the next character in \SOUL@charkern.
The last syllable can be found in \SOUL@syllable,
the last character in \SOUL@lasttoken.

\SOUL@everyspace#1 ␣ This macro is executed between every two words.
It is responsible for setting the space. The en-
gine submits a \penalty setting as parameter #1

that should be put in front of the space. The
macro should at least do {#1\space}. Further in-
formation can be found in \SOUL@lasttoken and
\SOUL@syllable. Note that this macro does not
care for the leading and trailing space. This is the
job of \SOUL@preamble and \SOUL@postamble.

7.2.3 Some examples

The above list’s middle column shows a mark that indicates in the following ex-
amples, when the respective macros are executed:

P

w
T

o
T

r
T

d
T SE

\SOUL@everytokenT is executed for every token.
\SOUL@everysyllableS is additionally executed

23

for every syllable. You will mostly just want to
use either of them.

P

o
T

n
T

e
T S

␣t
T

w
T

o
T SE

The macro \SOUL@everyspace is executed at every
space within the soul-ori argument. It has to take
one argument, that can either be empty or contain
a penalty, that should be applied to the space.

P

e
T

x
T S −

a
T

m
T S −

p
T

l
T

e
T SE

The macro \SOUL@everyhyphen is executed at every
possible implicit hyphenation point.

P

b
T

e
T

t
T

a
T S

-
=

t
T

e
T

s
T

t
T SE

Explicit hyphens trigger \SOUL@everyexhyphen.

It’s only natural that these examples, too, were automatically typeset by the soul
package using a special driver:

\DeclareRobustCommand*\an{%

\def\SOUL@preamble{$^{^P}$}%

\def\SOUL@everyspace##1{##1\texttt{\char‘\ }}%

\def\SOUL@postamble{$^{^E}$}%

\def\SOUL@everyhyphen{$^{^-}$}%

\def\SOUL@everyexhyphen##1{##1$^{^=}$}%

\def\SOUL@everysyllable{$^{^S}$}%

\def\SOUL@everytoken{\the\SOUL@token$^{^T}$}%

\def\SOUL@everylowerthan{$^{^L}$}%

\SOUL@}

7.3 A driver example

Let’s define a soul-ori driver that allows to typeset text with a \cdot at every
potential hyphenation point. The name of the macro shall be \sy (for sylla-
bles). Since the soul-ori mechanism is highly fragile, we use the LATEX command
\DeclareRobustCommand, so that the \sy macro can be used even in section head-
ings etc. The \SOUL@setup macro sets all interface macros to reasonable default
definitions. This could of course be done manually, too. As we won’t make use of
\SOUL@everytoken and \SOUL@postamble and both default to \relax, anyway,
we don’t have to define them here.

\DeclareRobustCommand*\sy{%

\SOUL@setup

We only set \lefthyphenmin and \righthyphenmin to zero at the beginning. All
changes are restored automatically, so there’s nothing to do at the end.

\def\SOUL@preamble{\lefthyphenmin=0 \righthyphenmin=0 }%

We only want simple spaces. Note that these are not provided by default!
\SOUL@everyspace may get a penalty to be applied to that space, so we set it
before.

\def\SOUL@everyspace##1{##1\space}%

24

There’s nothing to do for \SOUL@everytoken, we rather let \SOUL@everysyllable
handle a whole syllable at once. This has the advantage, that we don’t have to
deal with kerning values, because TEX takes care of that.

\def\SOUL@everysyllable{\the\SOUL@syllable}%

The TEX primitive \discretionary takes three arguments: 1. pre-hyphen mate-
rial 2. post-hyphen material, and 3. no-hyphenation material.

\def\SOUL@everyhyphen{%

\discretionary{%

\SOUL@setkern\SOUL@hyphkern

\SOUL@sethyphenchar

}{}{%

\hbox{\kern1pt\cdot}%

}%

}%

Explicit hyphens like dashes and slashes shall be set normally. We just have to
care for kerning. The hyphen has to be put in a box, because, as \hyphenchar,
it would yield its own, internal \discretionary. We need to set ours instead,
though.

\def\SOUL@everyexhyphen##1{%

\SOUL@setkern\SOUL@hyphkern

\hbox{##1}%

\discretionary{}{}{%

\SOUL@setkern\SOUL@charkern

}%

}%

Now that the interface macros are defined, we can start the scanner.

\SOUL@

}

This lit ·tle macro will hard ·ly be good e ·nough for lin ·guists, al ·though it us ·es
TEX’s ex ·cel ·lent hy ·phen ·ation al ·go ·rithm, but it is at least a nice al ·ter ·na ·tive
to the \showhyphens com ·mand.

Acknowledgements

A big thank you goes to Stefan Ulrich for his tips and bug reports during
the development of versions 1.* and for his lessons on high quality typesetting.
The \caps mechanism was very much influenced by his suggestions. Thanks to
Alexander Shibakov and Frank Mittelbach, who sent me a couple of
bug reports and feature requests, and finally encouraged me to (almost) completely
rewrite soul-ori. Thorsten Manegold contributed a series of bug reports,
helping to fix soul-ori’s macro expander and hence making it work together with
the jurabib package. Thanks to Axel Reichert, Anshuman Pandey,
and Peter Kreynin for detailed bug reports. Rowland McDonnel gave
useful hints for how to improve the documentation, but I’m afraid he will still
not be satisfied, and rightfully so. If only documentation writing weren’t that
boring. ;-)

25

References

[1] Berger, Jens: The jurabib package. CTAN-Archive, 2002, v0.52h.

[2] Bezos, Javier: The titlesec and titletoc package. CTAN-Archive, 1999,
v2.1.

[3] Carlisle, D. P.: The color package. CTAN-Archive, 1997, v1.0d.

[4] Duden, Volume 1. Die Rechtschreibung. Bibliographisches Institut,
Mannheim–Wien–Zürich, 1986, 19th edition.

[5] Knuth, Donald E.: The TEXbook. Addison–Wesley Publishing
Company, Reading/Massachusetts, 1989, 16th edition.

[6] Muszynski, Carl and Přihoda, Eduard: Die Terrainlehre in
Verbindung mit der Darstellung, Beurtheilung und Beschreibung des
Terrains vom militärischen Standpunkte. L.W. Seidel & Sohn, Wien, 1872.

[7] Normalverordnungsblatt für das k. u. k. Heer. Exercier-Reglement für die
k. u. k. Cavallerie, I. Theil. Wien, k. k. Hof- und Staatsdruckerei, 1898,
4th edition.

[8] Raichle, Bernd: The german package. CTAN-Archive, 1998, v2.5e.

[9] Schmidt, Walter: Ein Makropaket für die gebrochenen Schriften.
CTAN-Archive, 1998, v1.2.

[10] Tschichold, Jan: Ausgewählte Aufsätze über Fragen der Gestalt des
Buches und der Typographie. Birkhäuser, Basel, 1987, 2nd edition.

[11] Willberg, Hans Peter and Forssmann, Friedrich:
Lesetypographie. H. Schmidt, Mainz, 1997.

8 The implementation

The package preamble

This piece of code makes sure that the package is only loaded once. While this is
guaranteed by LATEX, we have to do it manually for all other flavors of TEX.

1 ⟨∗package⟩

2 \expandafter\ifx\csname SOUL@\endcsname\relax\else

3 \expandafter\endinput

4 \fi

Fake some of the LATEX commands if we were loaded by another flavor of TEX.
This might break some previously loaded packages, though, if e. g. \mbox was
already in use. But we don’t care . . .

5 \ifx\documentclass\SOULundefined

6 \chardef\atcode=\catcode‘@

7 \catcode‘\@=11

8 \def\DeclareRobustCommand*{\def}

9 \let\newcommand\DeclareRobustCommand

26

10 \def\DeclareOption#1#2{\expandafter\def\csname#1\endcsname{#2}}

11 \def\PackageError#1#2#3{{%

12 \newlinechar‘^^J%

13 \errorcontextlines\z@

14 \edef\\{\errhelp{#3}}\\%

15 \errmessage{Package #1 error: #2}%

16 }}

17 \def\@height{height}

18 \def\@depth{depth}

19 \def\@width{width}

20 \def\@plus{plus}

21 \def\@minus{minus}

22 \font\SOUL@tt=ectt1000

23 \let\@xobeysp\space

24 \let\linebreak\break

25 \let\mbox\hbox

soul-ori tries to be a good LATEX citizen if used under LATEX and declares itself
properly. Most command sequences in the package are protected by the SOUL@

namespace, all other macros are first defined to be empty. This will give us an
error message now if one of those was already used by another package.

26 \else

27 \NeedsTeXFormat{LaTeX2e}

28 \ProvidesPackage{soul-ori}

29 [2023-06-14 v3.1 letterspacing/underlining (mf)]

30 \newfont\SOUL@tt{ectt1000}

31 \newcommand*\sodef{}

32 \newcommand*\resetso{}

33 \newcommand*\capsdef{}

34 \newcommand*\capsfont{}

35 \newcommand*\setulcolor{}

36 \newcommand*\setuloverlap{}

37 \newcommand*\setul{}

38 \newcommand*\resetul{}

39 \newcommand*\setuldepth{}

40 \newcommand*\setstcolor{}

41 \newcommand*\sethlcolor{}

42 \newcommand*\so{}

43 \newcommand*\ul{}

44 \newcommand*\st{}

45 \newcommand*\hl{}

46 \newcommand*\caps{}

47 \newcommand*\soulaccent{}

48 \newcommand*\soulregister{}

49 \newcommand*\soulfont{}

50 \newcommand*\soulomit{}

51 \fi

Other packages wouldn’t be happy if we reserved piles of \newtoks and \newdimen,
so we try to get away with their \...def counterparts where possible. Local
registers are always even, while global ones are odd—this is a TEX convention.

52 \newtoks\SOUL@word

53 \newtoks\SOUL@lasttoken

54 \newtoks\SOUL@syllable

27

55 \newtoks\SOUL@cmds

56 \newtoks\SOUL@buffer

57 \newtoks\SOUL@token

58 \newdimen\SOUL@syllgoal

59 \newdimen\SOUL@syllwidth

60 \newdimen\SOUL@charkern

61 \newdimen\SOUL@hyphkern

62 \newdimen\SOUL@dimen

63 \newdimen\SOUL@dimeni

64 \newcount\SOUL@minus

65 \newcount\SOUL@comma

66 \newcount\SOUL@apo

67 \newcount\SOUL@grave

68 \newskip\SOUL@spaceskip

69 \newif\ifSOUL@ignorespaces

\soulomit

\SOUL@ignorem

\SOUL@ignore

\SOUL@stopm

\SOUL@stop

\SOUL@relaxm

\SOUL@lowerthanm

\SOUL@hyphenhintm

These macros are used as markers. To be able to check for such a marker with
\ifx we have also to create a macro that contains the marker. \SOUL@spc shall
contain a normal space with a \catcode of 10.

70 \def\soulomit#1{#1}

71 \def\SOUL@stopM{\SOUL@stop}

72 \let\SOUL@stop\relax

73 \def\SOUL@lowerthan{}

74 \def\SOUL@lowerthanM{\<}

75 \def\SOUL@hyphenhintM{\-}

76 \def\SOUL@n*{\let\SOUL@spc= }\SOUL@n* %

8.1 The kernel

\SOUL@ This macro is the entry to soul-ori. Using it does only make sense after setting up
a soul-ori driver. The next token after the soul-ori command will be assigned
to \SOUL@@. This can be some text enclosed in braces, or the name of a macro
that contains text.

77 \def\SOUL@{%

78 \futurelet\SOUL@@\SOUL@expand

79 }

\SOUL@expand If the first token after the soul-ori command was an opening brace we start
scanning. Otherwise, if the first token was a macro name, we expand that macro
and call \SOUL@ with its contents again. Unfortunately, we have to exclude some
macros therein from expansion.

80 \def\SOUL@expand{%

81 \ifcat\bgroup\noexpand\SOUL@@

82 \let\SOUL@n\SOUL@start

83 \else

84 \bgroup

85 \def\\##1##2{\def##2{\noexpand##2}}%

86 \the\SOUL@cmds

87 \SOUL@buffer={%

88 \\\TeX\\\LaTeX\\\soulomit\\\mbox\\\hbox\\\textregistered

89 \\\slash\\\textcircled\\\copyright\\\S\\\,\\\<\\\>\\~%

90 \\\\%

28

91 }%

92 \def\\##1{\def##1{\noexpand##1}}%

93 \the\SOUL@buffer

94 \let\protect\noexpand

95 \xdef\SOUL@n##1{\noexpand\SOUL@start{\SOUL@@}}%

96 \egroup

97 \fi

98 \SOUL@n

99 }

100 \long\def\SOUL@start#1{{%

101 \let\<\SOUL@lowerthan

102 \let\>\empty

103 \def\soulomit{\noexpand\soulomit}%

104 \gdef\SOUL@eventuallyexhyphen##1{}%

105 \let\SOUL@soeventuallyskip\relax

106 \SOUL@spaceskip=\fontdimen\tw@\font\@plus\fontdimen\thr@@\font

107 \@minus\fontdimen4\font

108 \SOUL@ignorespacesfalse

109 \leavevmode

110 \SOUL@preamble

111 \SOUL@lasttoken={}%

112 \SOUL@word={}%

113 \SOUL@minus\z@

114 \SOUL@comma\z@

115 \SOUL@apo\z@

116 \SOUL@grave\z@

117 \SOUL@do{#1}%

118 \SOUL@postamble

119 }}

120 \long\def\SOUL@do#1{%

121 \SOUL@scan#1\SOUL@stop

122 }

8.2 The scanner

\SOUL@scan This is the entry point for the scanner. It calls \SOUL@eval and will in turn be
called by \SOUL@eval again for every new token to be scanned.

123 \def\SOUL@scan{%

124 \futurelet\SOUL@@\SOUL@eval

125 }

\SOUL@eval And here it is: the scanner’s heart. It cares for quotes and dashes ligatures and
handles all commands that must not be fed to the analyzer.

126 \def\SOUL@eval{%

127 \def\SOUL@n*##1{\SOUL@scan}%

128 \if\noexpand\SOUL@@\SOUL@spc

129 \else

130 \SOUL@ignorespacesfalse

131 \fi

132 \ifnum\SOUL@minus=\thr@@

133 \SOUL@flushminus

134 \else\ifnum\SOUL@comma=\tw@

135 \SOUL@flushcomma

29

136 \else\ifnum\SOUL@apo=\tw@

137 \SOUL@flushapo

138 \else\ifnum\SOUL@grave=\tw@

139 \SOUL@flushgrave

140 \fi\fi\fi\fi

141 \ifx\SOUL@@-\else\SOUL@flushminus\fi

142 \ifx\SOUL@@,\else\SOUL@flushcomma\fi

143 \ifx\SOUL@@’\else\SOUL@flushapo\fi

144 \ifx\SOUL@@‘\else\SOUL@flushgrave\fi

145 \ifx\SOUL@@-%

146 \advance\SOUL@minus\@ne

147 \else\ifx\SOUL@@,%

148 \advance\SOUL@comma\@ne

149 \else\ifx\SOUL@@’%

150 \advance\SOUL@apo\@ne

151 \else\ifx\SOUL@@‘%

152 \advance\SOUL@grave\@ne

153 \else

154 \SOUL@flushminus

155 \SOUL@flushcomma

156 \SOUL@flushapo

157 \SOUL@flushgrave

158 \ifx\SOUL@@\SOUL@stop

159 \def\SOUL@n*{%

160 \SOUL@doword

161 \SOUL@eventuallyexhyphen\null

162 }%

163 \else\ifx\SOUL@@\par

164 \def\SOUL@n*\par{\par\leavevmode\SOUL@scan}%

165 \else\if\noexpand\SOUL@@\SOUL@spc

166 \SOUL@doword

167 \SOUL@eventuallyexhyphen\null

168 \ifSOUL@ignorespaces

169 \else

170 \SOUL@everyspace{}%

171 \fi

172 \def\SOUL@n* {\SOUL@scan}%

173 \else\ifx\SOUL@@\\%

174 \SOUL@doword

175 \SOUL@eventuallyexhyphen\null

176 \SOUL@everyspace{\unskip\nobreak\hfil\break}%

177 \SOUL@ignorespacestrue

178 \else\ifx\SOUL@@~%

179 \SOUL@doword

180 \SOUL@eventuallyexhyphen\null

181 \SOUL@everyspace{\nobreak}%

182 \else\ifx\SOUL@@\slash

183 \SOUL@doword

184 \SOUL@eventuallyexhyphen{/}%

185 \SOUL@exhyphen{/}%

186 \else\ifx\SOUL@@\mbox

187 \def\SOUL@n*{\SOUL@addprotect}%

188 \else\ifx\SOUL@@\hbox

189 \def\SOUL@n*{\SOUL@addprotect}%

30

190 \else\ifx\SOUL@@\soulomit

191 \def\SOUL@n*\soulomit##1{%

192 \SOUL@doword

193 {\spaceskip\SOUL@spaceskip##1}%

194 \SOUL@scan

195 }%

196 \else\ifx\SOUL@@\break

197 \SOUL@doword

198 \break

199 \else\ifx\SOUL@@\linebreak

200 \SOUL@doword

201 \SOUL@everyspace{\linebreak}%

202 \else\ifcat\bgroup\noexpand\SOUL@@

203 \def\SOUL@n*{\SOUL@addgroup{}}%

204 \else\ifcat$\noexpand\SOUL@@

205 \def\SOUL@n*{\SOUL@addmath}%

206 \else

207 \def\SOUL@n*{\SOUL@dotoken}%

208 \fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi\fi

209 \fi\fi\fi\fi

210 \SOUL@n*%

211 }

\SOUL@flushminus

\SOUL@flushcomma

\SOUL@flushapo

\SOUL@flushgrave

As their names imply, these macros flush special tokens or token groups to the
word register. They don’t do anything if the respective counter equals zero.
\SOUL@minus does also flush the word register, because hyphens disturb the ana-
lyzer.

212 \def\SOUL@flushminus{%

213 \ifcase\SOUL@minus

214 \else

215 \SOUL@doword

216 \SOUL@eventuallyexhyphen{-}%

217 \ifcase\SOUL@minus

218 \or

219 \SOUL@exhyphen{-}%

220 \or

221 \SOUL@exhyphen{--}%

222 \or

223 \SOUL@exhyphen{---}%

224 \fi

225 \SOUL@minus\z@

226 \fi

227 }

228 \def\SOUL@flushcomma{%

229 \ifcase\SOUL@comma

230 \or

231 \edef\x{\SOUL@word={\the\SOUL@word,}}\x

232 \or

233 \edef\x{\SOUL@word={\the\SOUL@word{{,,}}}}\x

234 \fi

235 \SOUL@comma\z@

236 }

237 \def\SOUL@flushapo{%

238 \ifcase\SOUL@apo

31

239 \or

240 \edef\x{\SOUL@word={\the\SOUL@word’}}\x

241 \or

242 \edef\x{\SOUL@word={\the\SOUL@word{{’’}}}}\x

243 \fi

244 \SOUL@apo\z@

245 }

246 \def\SOUL@flushgrave{%

247 \ifcase\SOUL@grave

248 \or

249 \edef\x{\SOUL@word={\the\SOUL@word‘}}\x

250 \or

251 \edef\x{\SOUL@word={\the\SOUL@word{{‘‘}}}}\x

252 \fi

253 \SOUL@grave\z@

254 }

\SOUL@dotoken Command sequences from the \SOUL@cmds list are handed over to \SOUL@docmd,
everything else is added to \SOUL@word, which will be fed to the analyzer every
time a word is completed. Since robust commands come with an additional space,
we have also to examine if there’s a space variant. Otherwise we couldn’t detect
pre-expanded formerly robust commands.

255 \def\SOUL@dotoken#1{%

256 \def\SOUL@@{\SOUL@addtoken{#1}}%

257 \def\\##1##2{%

258 \edef\SOUL@x{\string#1}%

259 \edef\SOUL@n{\string##2}%

260 \ifx\SOUL@x\SOUL@n

261 \def\SOUL@@{\SOUL@docmd{##1}{#1}}%

262 \else

263 \edef\SOUL@n{\string##2\space}%

264 \ifx\SOUL@x\SOUL@n

265 \def\SOUL@@{\SOUL@docmd{##1}{#1}}%

266 \fi

267 \fi

268 }%

269 \the\SOUL@cmds

270 \SOUL@@

271 }

\SOUL@docmd Here we deal with commands that were registered with \soulregister or
\soulaccent or were already predefined in \SOUL@cmds. Commands with iden-
tifier 9 are accents that are put in a group with their argument. Identifier 8 is
reserved for the \footnote command, and 7 for the \textsuperscript or similar
commands. The others are mostly (but not necessarily) font switching commands,
which may (1) or may not (0) take an argument. A registered command leads to
the current word buffer being flushed to the analyzer, after which the command
itself is executed.

Font switching commands which take an argument need special treatment:
They need to increment the level counter, so that \SOUL@eval knows where to
stop scanning. Furthermore the scanner has to be enabled to see the next token
after the opening brace.

32

272 \def\SOUL@docmd#1#2{%

273 \ifx9#1%

274 \def\SOUL@@{\SOUL@addgroup{#2}}%

275 \else\ifx8#1%

276 \SOUL@doword

277 \def\SOUL@@##1{%

278 \SOUL@token={\footnotemark}%

279 \SOUL@everytoken

280 \SOUL@syllable={\footnotemark}%

281 \SOUL@everysyllable

282 \footnotetext{##1}%

283 \SOUL@doword

284 \SOUL@scan

285 }%

286 \else\ifx7#1%

287 \SOUL@doword

288 \def\SOUL@@##1{%

289 \SOUL@token={#2{##1}}%

290 \SOUL@everytoken

291 \SOUL@syllable={#2{##1}}%

292 \SOUL@everysyllable

293 \SOUL@doword

294 \SOUL@scan

295 }%

296 \else\ifx1#1%

297 \SOUL@doword

298 \def\SOUL@@##1{%

299 #2{\protect\SOUL@do{##1}}%

300 \SOUL@scan

301 }%

302 \else

303 \SOUL@doword

304 #2%

305 \let\SOUL@@\SOUL@scan

306 \fi\fi\fi\fi

307 \SOUL@@

308 }

\SOUL@addgroup

\SOUL@addmath

\SOUL@addprotect

\SOUL@addtoken

The macro names say it all. Each of these macros adds some token to the
word buffer \SOUL@word. Setting \protect is necessary to make things like
\so{{a\itshape b}} work.

309 \def\SOUL@addgroup#1#2{%

310 {\let\protect\noexpand

311 \edef\x{\global\SOUL@word={\the\SOUL@word{{\noexpand#1#2}}}}\x}%

312 \SOUL@scan

313 }

314 \def\SOUL@addmath$#1${%

315 {\let\protect\noexpand

316 \edef\x{\global\SOUL@word={\the\SOUL@word{{\hbox{$#1$}}}}}\x}%

317 \SOUL@scan

318 }

319 \def\SOUL@addprotect#1#2{%

320 {\let\protect\noexpand

321 \edef\x{\global\SOUL@word={\the\SOUL@word{{\hbox{#2}}}}}\x}%

33

322 \SOUL@scan

323 }

324 \def\SOUL@addtoken#1{%

325 \edef\x{\SOUL@word={\the\SOUL@word\noexpand#1}}\x

326 \SOUL@scan

327 }

\SOUL@exhyphen Dealing with explicit hyphens can’t be done before we know the following char-
acter, because we need to know if a kerning value has to be inserted, hence we
delay the \SOUL@everyexhyphen call. Unfortunately, the word scanner has no
look-ahead mechanism.

328 \def\SOUL@exhyphen#1{%

329 \SOUL@getkern{\the\SOUL@lasttoken}{\SOUL@hyphkern}{#1}%

330 \gdef\SOUL@eventuallyexhyphen##1{%

331 \SOUL@getkern{#1}{\SOUL@charkern}{##1}%

332 \SOUL@everyexhyphen{#1}%

333 \gdef\SOUL@eventuallyexhyphen####1{}%

334 }%

335 }

\SOUL@cmds Here is a list of pre-registered commands that the analyzer cannot handle, so
the scanner has to look after them. Every entry consists of a handle (\\), an
identifier and the macro name. The class identifier can be 9 for accents, 8 for the
\footnote command, 7 for the \textsuperscript command, 0 for commands
without arguments and 1 for commands that take one argument. Commands
with two or more arguments are not supported.

336 \SOUL@cmds={%

337 \\9\‘\\9\’\\9\^\\9\"\\9\~\\9\=\\9\.%

338 \\9\u\\9\v\\9\H\\9\t\\9\c\\9\d\\9\b\\9\r

339 \\1\emph\\1\textrm\\1\textsf\\1\texttt\\1\textmd\\1\textbf

340 \\1\textup\\1\textsl\\1\textit\\1\textsc\\1\textnormal

341 \\0\rmfamily\\0\sffamily\\0\ttfamily\\0\mdseries\\0\upshape

342 \\0\slshape\\0\itshape\\0\scshape\\0\normalfont

343 \\0\em\\0\rm\\0\bf\\0\it\\0\tt\\0\sc\\0\sl\\0\sf

344 \\0\tiny\\0\scriptsize\\0\footnotesize\\0\small

345 \\0\normalsize\\0\large\\0\Large\\0\LARGE\\0\huge\\0\Huge

346 \\1\MakeUppercase\\7\textsuperscript\\8\footnote

347 \\1\textfrak\\1\textswab\\1\textgoth

348 \\0\frakfamily\\0\swabfamily\\0\gothfamily

349 }

\soulregister

\soulfont

\soulaccent

Register a font switching command (or some other command) for the scanner.
The first argument is the macro name, the second is the number of arguments
(0 or 1). Example: \soulregister{\bold}{0}. \soulaccent has only one
argument—the accent macro name. Example: \soulaccent{\~}. It is a short-
cut for \soulregister{\~}{9}. The \soulfont command is a synonym for
\soulregister and is kept for compatibility reasons.

350 \def\soulregister#1#2{{%

351 \edef\x{\global\SOUL@cmds={\the\SOUL@cmds

352 \noexpand\\#2\noexpand#1}}\x

353 }}

354 \def\soulaccent#1{\soulregister{#1}9}

355 \let\soulfont\soulregister

34

8.3 The analyzer

\SOUL@doword The only way to find out, where a given word can be broken into syllables, is to
let TEX actually typeset the word under conditions that enforce every possible
hyphenation. The result is a paragraph with one line for every syllable.

356 \def\SOUL@doword{%

357 \edef\x{\the\SOUL@word}%

358 \ifx\x\empty

359 \else

360 \SOUL@buffer={}%

361 \setbox\z@\vbox{%

362 \SOUL@tt

363 \hyphenchar\font‘\-

364 \hfuzz\maxdimen

365 \hbadness\@M

366 \pretolerance\m@ne

367 \tolerance\@M

368 \leftskip\z@

369 \rightskip\z@

370 \hsize1sp

371 \everypar{}%

372 \parfillskip\z@\@plus1fil

373 \hyphenpenalty-\@M

374 \noindent

375 \hskip\z@

376 \relax

377 \the\SOUL@word}%

378 \let\SOUL@errmsg\SOUL@error

379 \let\-\relax

380 \count@\m@ne

381 \SOUL@analyze

382 \SOUL@word={}%

383 \fi

384 }

We store the hyphen width of the ectt1000 font, because we will need it in
\SOUL@doword. (ectt1000 is a mono-spaced font, so every other character would
have worked, too.)

385 \setbox\z@\hbox{\SOUL@tt-}

386 \newdimen\SOUL@ttwidth

387 \SOUL@ttwidth\wd\z@

388 \def\SOUL@sethyphenchar{%

389 \ifnum\hyphenchar\font=\m@ne

390 \else

391 \char\hyphenchar\font

392 \fi

393 }

\SOUL@analyze This macro decomposes the box that \SOUL@doword has built. Because we have
to start at the bottom, we put every syllable onto the stack and execute ourselves
recursively. If there are no syllables left, we return from the recursion and pick
syllable after syllable from the stack again—this time from top to bottom—and
hand the syllable width \SOUL@syllgoal over to \SOUL@dosyllable. All but the

35

last syllable end with the hyphen character, hence we subtract the hyphen width
accordingly. After processing a syllable we calculate the hyphen kern (i. e. the
kerning amount between the last character and the hyphen). This might be needed
by \SOUL@everyhyphen, which we call now.

394 \def\SOUL@analyze{{%

395 \setbox\z@\vbox{%

396 \unvcopy\z@

397 \unskip

398 \unpenalty

399 \global\setbox\@ne=\lastbox}%

400 \ifvoid\@ne

401 \else

402 \setbox\@ne\hbox{\unhbox\@ne}%

403 \SOUL@syllgoal=\wd\@ne

404 \advance\count@\@ne

405 \SOUL@analyze

406 \SOUL@syllwidth\z@

407 \SOUL@syllable={}%

408 \ifnum\count@>\z@

409 \advance\SOUL@syllgoal-\SOUL@ttwidth

410 \SOUL@dosyllable

411 \SOUL@getkern{\the\SOUL@lasttoken}{\SOUL@hyphkern}%

412 {\SOUL@sethyphenchar}%

413 \SOUL@everyhyphen

414 \else

415 \SOUL@dosyllable

416 \fi

417 \fi

418 }}

\SOUL@dosyllable This macro typesets token after token from \SOUL@word until \SOUL@syllwidth
has reached the requested width \SOUL@syllgoal. Furthermore the kerning values
are prepared in case \SOUL@everytoken needs them. The \< command used by
\so and \caps needs some special treatment: It has to be checked for, even before
we can end a syllable.

419 \def\SOUL@dosyllable{%

420 \SOUL@gettoken

421 \SOUL@eventuallyexhyphen{\the\SOUL@token}%

422 \edef\x{\the\SOUL@token}%

423 \ifx\x\SOUL@hyphenhintM

424 \let\SOUL@n\SOUL@dosyllable

425 \else\ifx\x\SOUL@lowerthanM

426 \SOUL@gettoken

427 \SOUL@getkern{\the\SOUL@lasttoken}{\SOUL@charkern}

428 {\the\SOUL@token}%

429 \SOUL@everylowerthan

430 \SOUL@puttoken

431 \let\SOUL@n\SOUL@dosyllable

432 \else\ifdim\SOUL@syllwidth=\SOUL@syllgoal

433 \SOUL@everysyllable

434 \SOUL@puttoken

435 \let\SOUL@n\relax

436 \else\ifx\x\SOUL@stopM

36

437 \SOUL@errmsg

438 \global\let\SOUL@errmsg\relax

439 \let\SOUL@n\relax

440 \else

441 \setbox\tw@\hbox{\SOUL@tt\the\SOUL@token}%

442 \advance\SOUL@syllwidth\wd\tw@

443 \global\SOUL@lasttoken=\SOUL@token

444 \SOUL@gettoken

445 \SOUL@getkern{\the\SOUL@lasttoken}{\SOUL@charkern}

446 {\the\SOUL@token}%

447 \SOUL@puttoken

448 \global\SOUL@token=\SOUL@lasttoken

449 \SOUL@everytoken

450 \edef\x{\SOUL@syllable={\the\SOUL@syllable\the\SOUL@token}}\x

451 \let\SOUL@n\SOUL@dosyllable

452 \fi\fi\fi\fi

453 \SOUL@n

454 }

\SOUL@gettoken Provide the next token in \SOUL@token. If there’s already one in the buffer, use
that one first.

455 \def\SOUL@gettoken{%

456 \edef\x{\the\SOUL@buffer}%

457 \ifx\x\empty

458 \SOUL@nexttoken

459 \else

460 \global\SOUL@token=\SOUL@buffer

461 \global\SOUL@buffer={}%

462 \fi

463 }

\SOUL@puttoken The possibility to put tokens back makes the scanner design much cleaner. There’s
only room for one token, though, so we issue an error message if \SOUL@puttoken
is told to put a token back while the buffer is still in use. Note that \SOUL@debug
is actually undefined. This won’t hurt as it can only happen during driver design.
No user will ever see this message.

464 \def\SOUL@puttoken{%

465 \edef\x{\the\SOUL@buffer}%

466 \ifx\x\empty

467 \global\SOUL@buffer=\SOUL@token

468 \global\SOUL@token={}%

469 \else

470 \SOUL@debug{puttoken called twice}%

471 \fi

472 }

\SOUL@nexttoken

\SOUL@splittoken

If the word buffer \SOUL@word is empty, deliver a \SOUL@stop, otherwise take the
next token.

473 \def\SOUL@nexttoken{%

474 \edef\x{\the\SOUL@word}%

475 \ifx\x\empty

476 \SOUL@token={\SOUL@stop}%

477 \else

37

478 \expandafter\SOUL@splittoken\the\SOUL@word\SOUL@stop

479 \fi

480 }

481 \def\SOUL@splittoken#1#2\SOUL@stop{%

482 \global\SOUL@token={#1}%

483 \global\SOUL@word={#2}%

484 }

\SOUL@getkern Assign the kerning value between the first and the third argument to the second,
which has to be a \dimen register. \SOUL@getkern{A}{\dimen0}{V} will assign
the kerning value between ‘A’ and ‘V’ to \dimen0.

485 \def\SOUL@getkern#1#2#3{%

486 \setbox\tw@\hbox{#1#3}%

487 #2\wd\tw@

488 \setbox\tw@\hbox{#1\null#3}%

489 \advance#2-\wd\tw@

490 }

\SOUL@setkern Set a kerning value if it doesn’t equal 0 pt. Of course, we could also set a zero
value, but that would needlessly clutter the logfile.

491 \def\SOUL@setkern#1{\ifdim#1=\z@\else\kern#1\fi}

\SOUL@error This error message will be shown once for every word that couldn’t be recon-
structed by \SOUL@dosyllable.

492 \def\SOUL@error{%

493 \vrule\@height.8em\@depth.2em\@width1em

494 \PackageError{soul}{Reconstruction failed}{%

495 I came across hyphenatable material enclosed in group

496 braces,^^Jwhich I can’t handle. Either drop the braces or

497 make the material^^Junbreakable using an \string\mbox\space

498 (\string\hbox). Note that a space^^Jalso counts as possible

499 hyphenation point. See page 4 of the manual.^^JI’m leaving

500 a black square so that you can see where I am right now.%

501 }%

502 }

\SOUL@setup This is a null driver, that will be used as the basis for other drivers. These have
then to redefine only interface commands that shall differ from the default.

503 \def\SOUL@setup{%

504 \let\SOUL@preamble\relax

505 \let\SOUL@postamble\relax

506 \let\SOUL@everytoken\relax

507 \let\SOUL@everysyllable\relax

508 \def\SOUL@everyspace##1{##1\space}%

509 \let\SOUL@everyhyphen\relax

510 \def\SOUL@everyexhyphen##1{##1}%

511 \let\SOUL@everylowerthan\relax

512 }

513 \SOUL@setup

38

8.4 The l e t t e r s p a c i n g driver

\SOUL@sosetletterskip A handy helper macro that sets the inter-letter skip with a draconian \penalty.

514 \def\SOUL@sosetletterskip{\nobreak\hskip\SOUL@soletterskip}

\SOUL@sopreamble If letterspacing (\so or \caps) follows a white space, we replace it with our outer
space. LATEX uses \hskip1sp as marker in tabular entries, so we ignore tiny skips.

515 \def\SOUL@sopreamble{%

516 \ifdim\lastskip>5sp

517 \unskip

518 \hskip\SOUL@soouterskip

519 \fi

520 \spaceskip\SOUL@soinnerskip

521 }

\SOUL@sopostamble Start the look-ahead scanner \SOUL@socheck outside the \SOUL@ scope. That’s
why we make the outer space globally available in \skip@.

522 \def\SOUL@sopostamble{%

523 \global\skip@=\SOUL@soouterskip

524 \aftergroup\SOUL@socheck

525 }

\SOUL@socheck

\SOUL@sodoouter

Read the next token after the soul-ori command into \SOUL@@ and examine it.
If it’s some kind of space, replace it with outer space and the appropriate penalty,
else if it’s a closing brace, continue scanning. If it is neither: do nothing.

526 \def\SOUL@socheck{%

527 \futurelet\SOUL@@\SOUL@sodoouter

528 }

529 \def\SOUL@sodoouter{%

530 \def\SOUL@n*##1{\hskip\skip@}%

531 \ifcat\egroup\noexpand\SOUL@@

532 \unkern

533 \egroup

534 \def\SOUL@n*{\afterassignment\SOUL@socheck\let\SOUL@x=}%

535 \else\ifx\SOUL@spc\SOUL@@

536 \def\SOUL@n* {\hskip\skip@}%

537 \else\ifx~\SOUL@@

538 \def\SOUL@n*~{\nobreak\hskip\skip@}%

539 \else\ifx\ \SOUL@@

540 \else\ifx\space\SOUL@@

541 \else\ifx\@xobeysp\SOUL@@

542 \else

543 \def\SOUL@n*{}%

544 \let\SOUL@@\relax

545 \fi\fi\fi\fi\fi\fi

546 \SOUL@n*%

547 }

\SOUL@soeverytoken Typeset the token and put an unbreakable inter-letter skip thereafter. If the token
is \< then remove the last skip instead. Gets the character kerning value between
the actual and the next token in \SOUL@charkern.

548 \def\SOUL@soeverytoken{%

39

549 \edef\x{\the\SOUL@token}%

550 \ifx\x\SOUL@lowerthanM

551 \else

552 \global\let\SOUL@soeventuallyskip\SOUL@sosetletterskip

553 \the\SOUL@token

554 \SOUL@gettoken

555 \edef\x{\the\SOUL@token}%

556 \ifx\x\SOUL@stopM

557 \else

558 \SOUL@setkern\SOUL@charkern

559 \SOUL@sosetletterskip

560 \SOUL@puttoken

561 \fi

562 \fi

563 }

\SOUL@soeveryspace This macro sets an inner space. The argument may contain penalties and is used
for the ~ command. This construction was needed to make colored underlines
work, without having to put any of the coloring commands into the core. \kern\z@
prevents in subsequent \so commands that the second discards the outer space of
the first. To remove the space simply use \unkern\unskip.

564 \def\SOUL@soeveryspace#1{#1\space\kern\z@}

\SOUL@soeveryhyphen Sets implicit hyphens. The kerning value between the current token and the
hyphen character is passed in \SOUL@hyphkern.

565 \def\SOUL@soeveryhyphen{%

566 \discretionary{%

567 \unkern

568 \SOUL@setkern\SOUL@hyphkern

569 \SOUL@sethyphenchar

570 }{}{}%

571 }

\SOUL@soeveryexhyphen Sets the explicit hyphen that is passed as argument. \SOUL@soeventuallyskip

equals \SOUL@sosetletterskip, except when a \< had been detected. This is nec-
essary because \SOUL@soeveryexhyphen wouldn’t know otherwise, that it follows
a \<.

572 \def\SOUL@soeveryexhyphen#1{%

573 \SOUL@setkern\SOUL@hyphkern

574 \SOUL@soeventuallyskip

575 \hbox{#1}%

576 \discretionary{}{}{%

577 \SOUL@setkern\SOUL@charkern

578 }%

579 \SOUL@sosetletterskip

580 \global\let\SOUL@soeventuallyskip\relax

581 }

\SOUL@soeverylowerthan Let \< remove the last inter-letter skip. Set the kerning value between the token
before and that after the \< command.

582 \def\SOUL@soeverylowerthan{%

583 \unskip

40

584 \unpenalty

585 \global\let\SOUL@soeventuallyskip\relax

586 \SOUL@setkern\SOUL@charkern

587 }

\SOUL@sosetup Override all interface macros by our letterspacing versions. The only unused macro
is \SOUL@everysyllable.

588 \def\SOUL@sosetup{%

589 \SOUL@setup

590 \let\SOUL@preamble\SOUL@sopreamble

591 \let\SOUL@postamble\SOUL@sopostamble

592 \let\SOUL@everytoken\SOUL@soeverytoken

593 \let\SOUL@everyspace\SOUL@soeveryspace

594 \let\SOUL@everyhyphen\SOUL@soeveryhyphen

595 \let\SOUL@everyexhyphen\SOUL@soeveryexhyphen

596 \let\SOUL@everylowerthan\SOUL@soeverylowerthan

597 }

\SOUL@setso A handy macro for internal use.

598 \def\SOUL@setso#1#2#3{%

599 \def\SOUL@soletterskip{#1}%

600 \def\SOUL@soinnerskip{#2}%

601 \def\SOUL@soouterskip{#3}%

602 }

\sodef This macro assigns the letterspacing skips as well as an optional font switching
command to a command sequence name. \so itself will be defined using this
macro.

603 \def\sodef#1#2#3#4#5{%

604 \DeclareRobustCommand*#1{\SOUL@sosetup

605 \def\SOUL@preamble{%

606 \SOUL@setso{#3}{#4}{#5}%

607 #2%

608 \SOUL@sopreamble

609 }%

610 \SOUL@

611 }%

612 }

\resetso Let \resetso define reasonable default values for letterspacing.

613 \def\resetso{%

614 \sodef\textso{}{.25em}{.65em\@plus.08em\@minus.06em}%

615 {.55em\@plus.275em\@minus.183em}%

616 }

617 \resetso

\sloppyword Set up a letterspacing macro that inserts slightly stretchable space between the
characters. This can be used to typeset long words in narrow columns, where
ragged paragraphs are undesirable. See section 6.3.

618 \sodef\sloppyword{%

619 \linepenalty10

620 \hyphenpenalty10

41

621 \adjdemerits\z@

622 \doublehyphendemerits\z@

623 \finalhyphendemerits\z@

624 \emergencystretch.1em}%

625 {\z@\@plus.1em}%

626 {.33em\@plus.11em\@minus.11em}%

627 {.33em\@plus.11em\@minus.11em}

8.5 The caps driver

\caps Unless run under LATEX, make \caps just another simple letterspacing macro
that selects a font \capsfont (defaulting to \relax) but doesn’t have any special
capabilities.

628 \ifx\documentclass\@undefined

629 \let\capsfont\relax

630 \let\capsreset\relax

631 \def\capsdef#1#2#3#4#5{}

632 \def\capssave#1{}

633 \def\capsselect#1{}

634 \sodef\textcaps{\capsfont}

635 {.028em\@plus.005em\@minus.01em}%

636 {.37em\@plus.1667em\@minus.111em}%

637 {.37em\@plus.1em\@minus.14em}

\capsreset . . . else, if run under LATEX prepare a set of macros that maintain a database with
certain letterspacing values for different fonts. \capsreset clears the database
and inserts a default rule.

638 \else

639 \DeclareRobustCommand*\capsreset{%

640 \let\SOUL@capsbase\empty

641 \SOUL@capsdefault

642 }

\capsdef Add an entry to the database, which is of course nothing else than a TEX macro.
See section “List macros” of appendix D in the TEXbook [5] for details.

643 \def\capsdef#1#2#3#4#5{{%

644 \toks\z@{\\{#1/#2/#3/#4/#5}}%

645 \toks\tw@=\expandafter{\SOUL@capsbase}%

646 \xdef\SOUL@capsbase{\the\toks\z@\the\toks\tw@}%

647 }}

\capssave

\capsselect

Save the current database in a macro within the SOUL@ namespace and let
\capsselect restore this database.

648 \DeclareRobustCommand*\capssave[1]{%

649 \expandafter\global\expandafter\let

650 \csname SOUL@db@#1\endcsname\SOUL@capsbase

651 }

652 \DeclareRobustCommand*\capsselect[1]{%

653 \expandafter\let\expandafter\SOUL@capsbase

654 \csname SOUL@db@#1\endcsname

655 }

42

\SOUL@capsfind

\SOUL@caps

Go through the database entries and pick the first entry that matches the currently
active font. Then define an internal macro that uses the respective spacing values
in a macro that is equivalent to the \textso command.

656 \def\SOUL@capsfind#1/#2/#3/#4/#5/#6/#7/#8/#9/{%

657 \let\SOUL@match=1%

658 \SOUL@chk{#1}\f@encoding

659 \SOUL@chk{#2}\f@family

660 \SOUL@chk{#3}\f@series

661 \SOUL@chk{#4}\f@shape

662 \SOUL@dimchk{#5}\f@size

663 \if\SOUL@match1%

664 \let\\\@gobble

665 \gdef\SOUL@caps{%

666 \SOUL@sosetup

667 \def\SOUL@preamble{\SOUL@setso{#7}{#8}{#9}#6%

668 \SOUL@sopreamble}%

669 \SOUL@}%

670 \fi

671 }

\SOUL@chk Sets the \SOUL@match flag if both parameters are equal. This is used for all NFSS

elements except the font size.

672 \def\SOUL@chk#1#2{%

673 \if$#1$%

674 \else

675 \def\SOUL@n{#1}%

676 \ifx#2\SOUL@n\else\let\SOUL@match=0\fi

677 \fi

678 }

\SOUL@dimchk

\SOUL@rangechk

We do not only want to check if a given font size #1 matches #2, but also if it
fits into a given range. An omitted lower boundary is replaced by \z@ and an
omitted upper boundary by \maxdimen. The first of a series of \SOUL@chk and
\SOUL@dimchk statements, which detects that the arguments don’t match, sets
the \SOUL@match flag to zero. A value of 1 indicates that an entry in the font
database matches the currently used font.

679 \def\SOUL@dimchk#1#2{\if$#1$\else\SOUL@rangechk{#2}#1--\@ne\@@\fi}

680 \def\SOUL@rangechk#1#2-#3-#4\@@{%

681 \count@=#4%

682 \ifnum\count@>\z@

683 \ifdim#1\p@=#2\p@\else\let\SOUL@match=0\fi

684 \else

685 \SOUL@dimen=\if$#2$\z@\else#2\p@\fi

686 \ifdim#1\p@<\SOUL@dimen\let\SOUL@match=0\fi

687 \SOUL@dimen=\if$#3$\maxdimen\else#3\p@\fi

688 \ifdim#1\p@<\SOUL@dimen\else\let\SOUL@match=0\fi

689 \fi

690 }

\textcaps Find a matching entry in the database and start the letterspacing mechanism with
the given spacing values.

691 \DeclareRobustCommand*\textcaps{{%

43

692 \def\\##1{\expandafter\SOUL@capsfind##1/}%

693 \SOUL@capsbase

694 \aftergroup\SOUL@caps

695 }}

\SOUL@capsdefault Define a default database entry and a default font.

696 \def\SOUL@capsdefault{%

697 \capsdef{////}%

698 \SOUL@capsdfltfnt

699 {.028em\@plus.005em\@minus.01em}%

700 {.37em\@plus.1667em\@minus.1em}%

701 {.37em\@plus.111em\@minus.14em}%

702 }

703 \let\SOUL@capsdfltfnt\scshape

704 \capsreset

705 \fi

8.6 The underlining driver

\SOUL@ulleaders This macro sets the underline under the following \hskip.

706 \newdimen\SOUL@uldp

707 \newdimen\SOUL@ulht

708 \def\SOUL@ulleaders{%

709 \leaders\hrule\@depth\SOUL@uldp\@height\SOUL@ulht\relax

710 }

\SOUL@ulunderline Set an underline under the given material. It draws the line first, and the given
material afterwards. This is needed for highlighting, but gives less than optimal
results for colored overstriking, which, however, will hardly ever be used, anyway.

711 \def\SOUL@ulunderline#1{{%

712 \setbox\z@\hbox{#1}%

713 \SOUL@dimen=\wd\z@

714 \SOUL@dimeni=\SOUL@uloverlap

715 \advance\SOUL@dimen2\SOUL@dimeni

716 \rlap{%

717 \null

718 \kern-\SOUL@dimeni

719 \SOUL@ulcolor{\SOUL@ulleaders\hskip\SOUL@dimen\kern\z@}%

720 }%

721 \unhcopy\z@

722 }}

\SOUL@ulpreamble Just set up the line dimensions and the space skip. Normally, \spaceskip is unset
and not used by TEX. We need it, though, because we feed it to the \leaders

primitive.

723 \def\SOUL@ulpreamble{%

724 \SOUL@uldp=\SOUL@uldepth

725 \SOUL@ulht=-\SOUL@uldp

726 \advance\SOUL@uldp\SOUL@ulthickness

727 \spaceskip\SOUL@spaceskip

728 }

44

\SOUL@uleverysyllable By using \SOUL@everysyllable we don’t have to care about kerning values and
get better results for highlighting, where negative kerning values would otherwise
cut off characters.

729 \def\SOUL@uleverysyllable{%

730 \SOUL@ulunderline{%

731 \the\SOUL@syllable

732 \SOUL@setkern\SOUL@charkern

733 }%

734 }

\SOUL@uleveryspace Set a given penalty and an underlined \space equivalent. The \null prevents a
nasty gap in \textfrak {a \textswab{b}}, while it doesn’t seem to hurt in all
other cases. I didn’t investigate this.

735 \def\SOUL@uleveryspace#1{%

736 \SOUL@ulcolor{%

737 #1%

738 \SOUL@ulleaders

739 \hskip\spaceskip

740 \kern\z@

741 }%

742 \null

743 }

\SOUL@uleveryhyphen If hyphenation takes place, output an underlined hyphen with the required hyphen
kerning value.

744 \def\SOUL@uleveryhyphen{%

745 \discretionary{%

746 \unkern

747 \SOUL@ulunderline{%

748 \SOUL@setkern\SOUL@hyphkern

749 \SOUL@sethyphenchar

750 }%

751 }{}{}%

752 }

\SOUL@uleveryexhyphen Underline the given hyphen, en-dash, em-dash or \slash and care for kerning.

753 \def\SOUL@uleveryexhyphen#1{%

754 \SOUL@setkern\SOUL@hyphkern

755 \SOUL@ulunderline{#1}%

756 \discretionary{}{}{%

757 \SOUL@setkern\SOUL@charkern

758 }%

759 }

\SOUL@ulcolor

\setulcolor

Define the underline color or turn off coloring, in which case the lines are not just
colored black, but remain uncolored. This makes them appear black, nevertheless,
and has the advantage, that no Postscript \specials are cluttering the output.

760 \let\SOUL@ulcolor\relax

761 \def\setulcolor#1{%

762 \if$#1$

763 \let\SOUL@ulcolor\relax

764 \else

45

765 \def\SOUL@ulcolor{\textcolor{#1}}%

766 \fi

767 }

\setuloverlap

\SOUL@uloverlap

Set the overlap amount, that helps to avoid gaps on sloppy output devices.

768 \def\setuloverlap#1{\def\SOUL@uloverlap{#1}}

769 \setuloverlap{.25pt}

\SOUL@ulsetup The underlining driver is quite simple. No need for \SOUL@postamble and
\SOUL@everytoken.

770 \def\SOUL@ulsetup{%

771 \SOUL@setup

772 \let\SOUL@preamble\SOUL@ulpreamble

773 \let\SOUL@everysyllable\SOUL@uleverysyllable

774 \let\SOUL@everyspace\SOUL@uleveryspace

775 \let\SOUL@everyhyphen\SOUL@uleveryhyphen

776 \let\SOUL@everyexhyphen\SOUL@uleveryexhyphen

777 }

\SOUL@textul Describing self-explanatory macros is so boring!

778 \DeclareRobustCommand*\textul{\SOUL@ulsetup\SOUL@}

\setul

\SOUL@uldepth

\SOUL@ulthickness

Set the underlining dimensions. Either value may be omitted and lets the respec-
tive macro keep its current contents.

779 \def\setul#1#2{%

780 \if$#1$\else\def\SOUL@uldepth{#1}\fi

781 \if$#2$\else\def\SOUL@ulthickness{#2}\fi

782 }

\resetul Set reasonable default values that fit most latin fonts.

783 \def\resetul{\setul{.65ex}{.1ex}}

784 \resetul

\setuldepth This macro sets all designated “letters” (\catcode=11) or the given material in a
box and sets the underlining dimensions according to the box depth.

785 \def\setuldepth#1{{%

786 \def\SOUL@n{#1}%

787 \setbox\z@\hbox{%

788 \tracinglostchars\z@

789 \ifx\SOUL@n\empty

790 \count@\z@

791 \loop

792 \ifnum\catcode\count@=11\char\count@\fi

793 \ifnum\count@<\@cclv

794 \advance\count@\@ne

795 \repeat

796 \else

797 #1%

798 \fi

799 }%

800 \SOUL@dimen\dp\z@

801 \advance\SOUL@dimen\p@

802 \xdef\SOUL@uldepth{\the\SOUL@dimen}%

803 }}

46

8.7 The overstriking driver

\SOUL@stpreamble Striking out is just underlining with a raised line of a different color. Hence we
only need to define the preamble accordingly and let the underlining preamble
finally do its job. Not that colored overstriking was especially useful, but we want
at least to keep it black while we might want to set underlines in some fancy color.

804 \def\SOUL@stpreamble{%

805 \SOUL@dimen\SOUL@ulthickness

806 \SOUL@dimeni=-.5ex

807 \advance\SOUL@dimeni-.5\SOUL@dimen

808 \edef\SOUL@uldepth{\the\SOUL@dimeni}%

809 \let\SOUL@ulcolor\SOUL@stcolor

810 \SOUL@ulpreamble

811 }

\SOUL@stsetup We re-use the whole underlining setup and just replace the preamble with our
modified version.

812 \def\SOUL@stsetup{%

813 \SOUL@ulsetup

814 \let\SOUL@preamble\SOUL@stpreamble

815 }

\textst These pretzels are making me thirsty . . .

816 \DeclareRobustCommand*\textst{\SOUL@stsetup\SOUL@}

\SOUL@stcolor

\setstcolor

Set the overstriking color. This won’t be used often, but is required in cases,
where the underlines are colored. You wouldn’t want to overstrike in the same
color. Note that overstriking lines are drawn beneath the text, hence bright colors
won’t look good.

817 \let\SOUL@stcolor\relax

818 \def\setstcolor#1{%

819 \if$#1$

820 \let\SOUL@stcolor\relax

821 \else

822 \def\SOUL@stcolor{\textcolor{#1}}%

823 \fi

824 }

8.8 The highlighting driver

\SOUL@hlpreamble This is nothing else than overstriking with very thick lines.

825 \def\SOUL@hlpreamble{%

826 \setul{}{2.5ex}%

827 \let\SOUL@stcolor\SOUL@hlcolor

828 \SOUL@stpreamble

829 }

\SOUL@hlsetup No need to re-invent the wheel. Just use the overstriking setup with a different
preamble.

830 \def\SOUL@hlsetup{%

831 \SOUL@stsetup

832 \let\SOUL@preamble\SOUL@hlpreamble

833 }

47

\texthl

\sethlcolor

\SOUL@hlcolor

Define the highlighting macro and the color setting macro with a simple default
color. Yellow isn’t really pleasing, but it’s already predefined by the color package.

834 \DeclareRobustCommand*\texthl{\SOUL@hlsetup\SOUL@}

835 \def\sethlcolor#1{\if$#1$\else\def\SOUL@hlcolor{\textcolor{#1}}\fi}

836 \sethlcolor{yellow}

The package postamble

\so

\ul

\st

\hl

\caps

OK, I lied. The short macro names are just abbreviations for their longer coun-
terpart. Some people might be used to \text* style commands to select a certain
font. And then it doesn’t hurt to reserve these early enough.

837 \let\so\textso

838 \let\ul\textul

839 \let\st\textst

840 \let\hl\texthl

841 \let\caps\textcaps

When used in an environment other than LATEX and the german package was
already loaded, define the double quotes as accent.

842 \ifx\documentclass\@undefined

843 \ifx\mdqoff\@undefined

844 \else

845 \soulaccent{"}%

846 \fi

847 \catcode‘\@=\atcode

If we have been loaded by a LATEX environment and the color package wasn’t
also loaded, we disable all colors. Then we add the umlaut accent " if the german
package is present. The quotes character has to be \catcode’d \active now, or
it won’t get recognized later. The capsdefault option overrides the \caps driver
and lets \SOUL@ set an underline. Finally load the local configuration, process the
capsdefault option and exit.

848 \else

849 \bgroup

850 \catcode‘\"\active

851 \AtBeginDocument{%

852 \@ifundefined{color}{%

853 \let\SOUL@color\relax

854 \let\setulcolor\@gobble

855 \let\setstcolor\@gobble

856 \let\sethlcolor\@gobble

857 \let\hl\ul

858 }{}

859 \@ifundefined{mdqoff}{}{\soulaccent{"}}

860 }

861 \egroup

862 \DeclareOption{capsdefault}{%

863 \AtBeginDocument{%

864 \def\SOUL@capsdfltfnt#1{%

865 \SOUL@ulsetup

866 \SOUL@ulpreamble

867 \scshape

48

868 }%

869 }%

870 }

871 \InputIfFileExists{soul.cfg}%

872 {\PackageInfo{soul}{Local config file soul.cfg used}}{}

873 \ProcessOptions

874 \fi

875 \endinput

876 ⟨/package⟩

Id

49

	Contents
	1 Typesetting rules
	2 Short introduction and common rules
	2.1 Some things work
	2.2 … others don't
	2.3 Troubleshooting

	3 Letterspacing
	3.1 How it works
	3.2 Some examples
	3.3 Typesetting caps-and-small-caps fonts
	3.4 Typesetting Fraktur
	3.5 Dirty tricks

	4 Underlining
	4.1 Settings
	4.2 Some examples

	5 Customization
	5.1 Adding accents
	5.2 Adding font commands
	5.3 Changing the internal font
	5.4 The configuration file

	6 Miscellaneous
	6.1 Using soul with other flavors of TeX
	6.2 Using soul commands for logical markup
	6.3 Typesetting long words in narrow columns
	6.4 Using soul commands in section headings

	7 How the package works
	7.1 The kernel
	7.2 The interface
	7.3 A driver example

	References
	8 The implementation
	8.1 The kernel
	8.2 The scanner
	8.3 The analyzer
	8.4 The letterspacing driver
	8.5 The caps driver
	8.6 The underlining driver
	8.7 The overstriking driver
	8.8 The highlighting driver

