
The CTIE processor

Section Page
Introduction . 1 1
Input and output . 8 4
Data structures . 10 5
File I/O . 19 7
Reporting errors to the user . 28 12
Handling multiple change files . 38 15
Input/output organisation . 42 16
System-dependent changes . 70 25
Index . 71 26

c© 2002,2003 Julian Gilbey
All rights reserved.
This program is distributed WITHOUT ANY WARRANTY, express or implied.
Permission is granted to make and distribute verbatim copies of this program provided that the copyright

notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this program under the conditions

for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

§1 The CTIE processor INTRODUCTION 1

March 12, 2025 at 15:40

1. Introduction. Whenever a programmer wants to change a given WEB or CWEB program (referred to
as a WEB program throughout this program) because of system dependencies, she or he will create a new
change file. In addition there may be a second change file to modify system independent modules of the
program. But the WEB file cannot be tangled and weaved with more than one change file simultaneously. The
TIE program was designed to merge a WEB file and several change files producing a new WEB file, and since
the input files are tied together, the program was called TIE. Furthermore, the program could be used to
merge several change files giving a new single change file. This method seems to be more important because
it doesn’t modify the original source file.

However, the introduction of CWEB has meant that TIE is not quite able to perform its task correctly any
longer: CWEB introduced the idea of include files, which are input into CWEB files using the @i command, and
TIE is unable to handle such constructs if the change files modify lines included in those files. The present
program, CTIE, is designed to overcome this lack. Like TIE, upon which it is based, it can either output a
single master WEB file or a master change file. However, in both cases, any include commands will be totally
expanded and the files included in the output rather than the @i commands being left; this makes this
code feasible, which it would not necessarily be otherwise. Other than this difference, CTIE should function
identically to TIE on files which do not involve any CWEB include commands.

The algorithm used is essentially the same as that of TIE, with modifications to check for and handle @i

commands. Thus, as with TIE, the method used only needs one buffer line for each input file. Thus the
storage requirement of CTIE does not depend on the sizes of the input files but only on their number.

The program is written in C and has few system dependencies.
The “banner line” defined here should be changed whenever CTIE is modified. We also keep the version

number here separately for ease; it is used below.

#define version number "1.1"

#define banner "This is CTIE, Version 1.1"

#define copyright
"Copyright 2002,2003 Julian Gilbey. All rights reserved. There is no warranty.\

\nRun with the −−version option for other important information."

2. The main outline of the program is now given. This can be used more or less for any C program.

〈Global #includes 8 〉
〈Global types 4 〉
〈Predeclaration of functions 5 〉
〈Global variables 7 〉
〈Error handling functions 29 〉
〈 Internal functions 19 〉
〈The main function 3 〉

2 INTRODUCTION The CTIE processor §3

3. And this is the structure of the main function: this is where CTIE starts, and where it ends.

〈The main function 3 〉 ≡
main (argc , argv)

int argc ;
string ∗ argv ;

{
〈 Initialise parameters 17 〉;
〈 Scan the parameters 61 〉
〈Print the banners 60 〉;
〈Get the master file started 40 〉
〈Prepare the change files 41 〉
〈Prepare the output file 38 〉
〈Process the input 57 〉
〈Check that all changes have been read 58 〉
exit (wrap up());
}

This code is used in section 2.

4. We include the additional types boolean and string . CTIE replaces the complex TIE character set
handling (based on that of the original WEB system) with the standard CWEB behaviour, and so uses the char
type for input and output.

#define false 0
#define true 1

〈Global types 4 〉 ≡
typedef int boolean;
typedef char ∗string;

See also sections 10, 11, 12, 13, and 14.

This code is used in section 2.

5. We predeclare some standard string-handling functions here instead of including their system header
files, because the names of the header files are not as standard as the names of the functions. (There’s
confusion between <string.h> and <strings.h>.)

〈Predeclaration of functions 5 〉 ≡
extern int strlen (); . length of string /
extern char ∗strcpy (); . copy one string to another /
extern int strncmp(); . compare up to n string characters /
extern char ∗strncpy (); . copy up to n string characters /
extern char ∗strerror ();

See also sections 28, 33, 35, and 67.

This code is used in section 2.

6. The following parameters should be sufficient for most applications of CTIE.

#define buf size 1024 . maximum length of one input line /
#define max file index 32 . we don’t think that anyone needs more than 32 change files /
#define xisupper (c) (isupper (c) ∧ ((unsigned char) c < ◦200))

§7 The CTIE processor INTRODUCTION 3

7. We introduce a history variable that allows us to set a return code if the operating system can use it.
First we introduce the coded values for the history. This variable must be initialized. (We do this even if
the value given may be the default for variables, just to document the need for the initial value.)

#define spotless 0
#define troublesome 1
#define fatal 2

〈Global variables 7 〉 ≡
int history ← spotless ;

See also sections 15, 16, 18, 22, 39, and 66.

This code is used in section 2.

4 INPUT AND OUTPUT The CTIE processor §8

8. Input and output. Standard output for the user is done by writing on stdout . Error messages
are written to stderr . Terminal input is not needed in this version of CTIE. stdin , stdout and stderr are
predefined as we include the stdio.h definitions.

〈Global #includes 8 〉 ≡
#include <stdio.h>

See also sections 9 and 37.

This code is used in section 2.

9. And we need dynamic memory allocation. This should cause no trouble in any C program.

〈Global #includes 8 〉 +≡
#ifdef __STDC__

#include <stdlib.h>

#else
#include <malloc.h>

#endif

§10 The CTIE processor DATA STRUCTURES 5

10. Data structures. The multiple primary input files (master file and change files) are treated the same
way. To organize the simultaneous usage of several input files, we introduce the data type in file modes.

The mode search indicates that CTIE searches for a match of the input line with any line of an input file
in reading mode. test is used whenever a match is found and it has to be tested if the next input lines do
match also. reading describes that the lines can be read without any check for matching other lines. ignore
denotes that the file cannot be used. This may happen because an error has been detected or because the
end of the file has been found.

file types is used to describe whether a file is a master file or a change file. The value unknown is added
to this type to set an initial mode for the output file. This enables us to check whether any option was used
to select the kind of output. (this would even be necessary if we would assume a default action for missing
options.)

〈Global types 4 〉 +≡
#define search 0
#define test 1
#define reading 2
#define ignore 3

typedef int in file modes; . should be enum (search , test , reading , ignore) /
#define unknown 0
#define master 1
#define chf 2

typedef int file types; . should be enum (unknown ,master , chf) /

11. A variable of type out md type will tell us in what state the output change file is during processing.
normal will be the state, when we did not yet start a change, pre will be set when we write the lines to be
changes and post will indicate that the replacement lines are written.

〈Global types 4 〉 +≡
#define normal 0
#define pre 1
#define post 2

typedef int out md type; . should be enum (normal , pre , post) /

12. The next type will indicate variables used as an index into the file table.

〈Global types 4 〉 +≡
typedef int file index; . −1..max file index + 1 /

13. This is the data structure in which we collect information about each include file.

〈Global types 4 〉 +≡
typedef struct indsc {

char file name [max file name length];
long line ;
FILE ∗the file ;
struct indsc ∗parent ;
} include description;

6 DATA STRUCTURES The CTIE processor §14

14. The following data structure contains all of the information needed to use these input files.

format line dummy

〈Global types 4 〉 +≡
typedef struct idsc {

string file name ;
char buffer [buf size];
in file modes mode ;
long line ;
file types type of file ;
include description ∗current include ;
char ∗buffer end ;
char ∗limit ;
char ∗loc ;
FILE ∗the file ;
int dont match ;
} input description;

15. Every one of the primary input files might include another file using the @i include mechanism. In
turn, each of these might include other files, and so on. We allow a limited number of these files to be opened
simultaneously, and we store information about the currently open include files as a linked list attached to
each primary file.

#define max include files 20 . maximum number of include files open simultaneously /
#define max file name length 60

〈Global variables 7 〉 +≡
int total include files ← 0; . count ’em /

16. The following variables refer to the files in action, the number of change files, the mode of operation
and the current output state.

〈Global variables 7 〉 +≡
file index actual input , test input ,no ch ;
file types prod chf ← unknown ;
out md type out mode ;

17. And the actual input and out mode variables need to be initialised sensibly.

〈 Initialise parameters 17 〉 ≡
actual input ← 0; out mode ← normal ;

This code is used in section 3.

18. All primary input files (including the master file) are recorded in the following structure. The
components are usually accessed through a local pointer variable, requiring only a one-time-computation
of the index expression.

〈Global variables 7 〉 +≡
input description ∗input organisation [max file index + 1];

§19 The CTIE processor FILE I/O 7

19. File I/O. The basic function get line can be used to get a line from an input file. The line is stored
in the buffer part of the descriptor. The components limit and line are updated. If the end of the file is
reached mode is set to ignore . On some systems it might be useful to replace tab characters by a proper
number of spaces since several editors used to create change files insert tab characters into a source file not
under control of the user. So it might be a problem to create a matching change file.

We define get line to read a line from a file specified by the corresponding file descriptor. This function
returns true if it is successful and false if the end of the file has been reached.

〈 Internal functions 19 〉 ≡
boolean get line (i, do includes)

file index i;
boolean do includes ;

{
register input description ∗inp desc ← input organisation [i];
register FILE ∗fp ;

if (inp desc~mode ≡ ignore) return false ;
restart :

if (inp desc~current include 6= Λ) {
register include description ∗inc desc ← inp desc~current include ;

fp ← inc desc~ the file ; 〈Get include line into buffer or goto restart if end of file 24 〉
}
else {

fp ← inp desc~ the file ; 〈Get line into buffer, return false if end of file 20 〉
}
if (do includes) 〈Check for @i in newly read line, goto restart if include fails 26 〉
return true ;
}

See also sections 32, 42, 43, 46, 47, 48, and 59.

This code is used in section 2.

20. Lines must fit into the buffer completely. We read all characters sequentially until an end of line is
found (but do not forget to check for EOF!). Too long input lines will be truncated. This will result in a
damaged output if they occur in the replacement part of a change file, or in an incomplerte check if the
matching part is concerned. Tab character expansion might be done here.

〈Get line into buffer, return false if end of file 20 〉 ≡
{

register int c; . the actual character read /
register char ∗k; . where the next character goes /

if (feof (fp)) 〈Handle end of file and return 21 〉
inp desc~ limit ← k ← inp desc~buffer ; . beginning of buffer /
while (k ≤ inp desc~buffer end ∧ (c← getc(fp)) 6= EOF ∧ c 6= ’\n’)

if ((∗(k++)← c) 6= ’ ’) inp desc~ limit ← k;
if (k > inp desc~buffer end)

if ((c← getc(fp)) 6= EOF ∧ c 6= ’\n’) {
ungetc(c, fp); inp desc~ loc ← inp desc~buffer ; err print (i, "! Input line too long");

}
if (c ≡ EOF ∧ inp desc~ limit ≡ inp desc~buffer) 〈Handle end of file and return 21 〉
〈 Increment the line number and print a progess report at certain times 23 〉
}

This code is used in section 19.

8 FILE I/O The CTIE processor §21

21. End of file is special if this file is the master file. Then we set the global flag variable input has ended .

〈Handle end of file and return 21 〉 ≡
{

inp desc~mode ← ignore ; inp desc~ limit ← Λ; . mark end-of-file /
if (inp desc~ type of file ≡ master) input has ended ← true ;
fclose (fp); return false ;
}

This code is used in section 20.

22. This variable must be declared for global access.

〈Global variables 7 〉 +≡
boolean input has ended ← false ;

23. This section does what its name says. Every 100 lines in the master file we print a dot, every 500 lines
the number of lines is shown.

〈 Increment the line number and print a progess report at certain times 23 〉 ≡
inp desc~ line ++;
if (inp desc~ type of file ≡ master ∧ inp desc~ line % 100 ≡ 0) {

if (inp desc~ line % 500 ≡ 0) printf ("%ld", inp desc~ line);
else putchar (’.’);
fflush (stdout);
}

This code is used in section 20.

24. The following is very similar to the above, but for the case where we are reading from an include file.

〈Get include line into buffer or goto restart if end of file 24 〉 ≡
{

register int c; . the actual character read /
register char ∗k; . where the next character goes /

if (feof (fp)) 〈Handle end of include file and goto restart 25 〉
inp desc~ limit ← k ← inp desc~buffer ; . beginning of buffer /
while (k ≤ inp desc~buffer end ∧ (c← getc(fp)) 6= EOF ∧ c 6= ’\n’)

if ((∗(k++)← c) 6= ’ ’) inp desc~ limit ← k;
if (k > inp desc~buffer end)

if ((c← getc(fp)) 6= EOF ∧ c 6= ’\n’) {
ungetc(c, fp); inp desc~ loc ← inp desc~buffer ; err print (i, "! Input line too long");

}
if (c ≡ EOF ∧ inp desc~ limit ≡ inp desc~buffer) 〈Handle end of include file and goto restart 25 〉
inc desc~ line ++;
}

This code is used in section 19.

25. We don’t bail out if we find the end of an include file, we just return to the parent file.

〈Handle end of include file and goto restart 25 〉 ≡
{

include description ∗temp ← inc desc~parent ;

fclose (fp); free (inc desc); total include files −−; inp desc~current include ← temp ; goto restart ;
}

This code is used in section 24.

§26 The CTIE processor FILE I/O 9

26. Usually, we have to check the line we have just read to see whether it begins with @i and therefore
needs expanding.

〈Check for @i in newly read line, goto restart if include fails 26 〉 ≡
{

inp desc~ loc ← inp desc~buffer ; ∗inp desc~ limit ← ’ ’;
if (∗inp desc~buffer ≡ ’@’ ∧ (inp desc~buffer [1] ≡ ’i’ ∨ inp desc~buffer [1] ≡ ’I’)) {

inp desc~ loc ← inp desc~buffer + 2; ∗inp desc~ limit ← ’"’;
. this will terminate the search in all cases /

while (∗inp desc~ loc ≡ ’ ’ ∨ ∗inp desc~ loc ≡ ’\t’) inp desc~ loc ++;
if (inp desc~ loc ≥ inp desc~ limit) {

err print (i, "! Include file name not given"); goto restart ;
}
if (total include files ≥ max include files) {

err print (i, "! Too many nested includes"); goto restart ;
}
total include files ++; . push input stack /
〈Try to open include file, abort push if unsuccessful, go to restart 27 〉;

}
}

This code is used in section 19.

10 FILE I/O The CTIE processor §27

27. When an @i line is found in the file, we must temporarily stop reading it and start reading from the
named include file. The @i line should give a complete file name with or without double quotes. If the
environment variable CWEBINPUTS is set, or if the compiler flag of the same name was defined at compile
time, CWEB will look for include files in the directory thus named, if it cannot find them in the current
directory. (Colon-separated paths are not supported.) The remainder of the @i line after the file name is
ignored.

#define too long ()
{

total include files −−; free (new inc); err print (i, "! Include file name too long");
goto restart ;
}

〈Try to open include file, abort push if unsuccessful, go to restart 27 〉 ≡
{

include description ∗new inc ;
char temp file name [max file name length];
char ∗file name end ;
char ∗k, ∗kk ;
int l; . length of file name /

new inc ← (include description ∗) malloc(sizeof (include description));
if (new inc ≡ Λ) fatal error (i, "! No memory for new include descriptor", "");
new inc~ line ← 0; k ← new inc~file name ; file name end ← k + max file name length − 1;
if (∗inp desc~ loc ≡ ’"’) {

inp desc~ loc ++;
while (∗inp desc~ loc 6= ’"’ ∧ k ≤ file name end) ∗k++ ← ∗inp desc~ loc ++;
if (inp desc~ loc ≡ inp desc~ limit) k ← file name end + 1; . unmatched quote is ‘too long’ /

}
else

while (∗inp desc~ loc 6= ’ ’ ∧ ∗inp desc~ loc 6= ’\t’ ∧ ∗inp desc~ loc 6= ’"’ ∧ k ≤ file name end)
∗k++ ← ∗inp desc~ loc ++;

if (k > file name end) too long ();
∗k ← ’\0’;
if ((new inc~ the file ← fopen (new inc~file name , "r")) 6= Λ) {

new inc~parent ← inp desc~current include ; . link it in /
inp desc~current include ← new inc ; goto restart ; . success /

}
kk ← getenv ("CWEBINPUTS");
if (kk 6= Λ) {

if ((l← strlen (kk)) > max file name length − 2) too long ();
strcpy (temp file name , kk);

}
else {

#ifdef CWEBINPUTS

if ((l← strlen (CWEBINPUTS)) > max file name length − 2) too long ();
strcpy (temp file name , CWEBINPUTS);

#else
l← 0;

#endif . CWEBINPUTS /
}
if (l > 0) {

if (k + l + 2 ≥ file name end) too long ();
for (; k ≥ new inc~file name ; k−−) ∗(k + l + 1)← ∗k;

§27 The CTIE processor FILE I/O 11

strcpy (new inc~file name , temp file name); new inc~file name [l]← ’/’;
. UNIX pathname separator /

if ((new inc~ the file ← fopen (new inc~file name , "r")) 6= Λ) {
new inc~parent ← inp desc~current include ; . link it in /
inp desc~current include ← new inc ; goto restart ; . success /

}
}
total include files −−; free (new inc); err print (i, "! Cannot open include file"); goto restart ;
}

This code is used in section 26.

12 REPORTING ERRORS TO THE USER The CTIE processor §28

28. Reporting errors to the user. There may be errors if a line in a given change file does not match
a line in the master file or a replacement in a previous change file. Such errors are reported to the user by
saying

err print (file no , "! Error message");

where file no is the number of the file which is concerned by the error. Please note that no trailing dot is
supplied in the error message because it is appended by err print .

〈Predeclaration of functions 5 〉 +≡
void err print ();

29. Here is the outline of the err print function.

〈Error handling functions 29 〉 ≡
void err print (i, s) . prints ‘.’ and location of error message /

file index i;
char ∗s;

{
char ∗k, ∗l; . pointers into an appropriate buffer /

fprintf (stderr , ∗s ≡ ’!’ ? "\n%s" : "%s", s);
if (i ≥ 0) 〈Print error location based on input buffer 30 〉
else putc(’\n’, stderr);
fflush (stderr); history ← troublesome ;
}

See also section 36.

This code is used in section 2.

§30 The CTIE processor REPORTING ERRORS TO THE USER 13

30. The error locations can be indicated by using the variables loc , line and file name within the appropri-
ate file description structures, which tell respectively the first unlooked-at position in the buffer , the current
line number and the current file. We can determine whether we are looking at an included file or not by
examining the current include variable. This routine should be modified on systems whose standard text
editor has special line-numbering conventions.

〈Print error location based on input buffer 30 〉 ≡
{

register input description ∗inp desc ← input organisation [i];
register include description ∗inc desc ← inp desc~current include ;

if (inc desc 6= Λ) {
fprintf (stderr , ". (l. %ld of include file %s", inc desc~ line , inc desc~file name);
fprintf (stderr , " included from l. %ld of %s file %s)\n", inp desc~ line ,

inp desc~ type of file ≡ master ? "master" : "change", inp desc~file name);
}
else fprintf (stderr , ". (l. %ld of %s file %s)\n", inp desc~ line ,

inp desc~ type of file ≡ master ? "master" : "change", inp desc~file name);
l← (inp desc~ loc ≥ inp desc~ limit ? inp desc~ limit : inp desc~ loc);
if (l > inp desc~buffer) {

for (k ← inp desc~buffer ; k < l; k++)
if (∗k ≡ ’\t’) putc(’ ’, stderr);
else putc(∗k, stderr); . print the characters already read /

putc(’\n’, stderr);
for (k ← inp desc~buffer ; k < l; k++) putc(’ ’, stderr); . space out the next line /

}
for (k ← l; k < inp desc~ limit ; k++) putc(∗k, stderr); . print the part not yet read /
putc(’\n’, stderr);
}

This code is used in section 29.

31. Non recoverable errors are handled by calling fatal error that outputs a message and then calls
‘wrap up ’ and exits. err print will print the error message followed by an indication of where the error
was spotted in the source files. fatal error cannot state any files because the problem is usually to access
these.

#define fatal error (i, s, t)
{

fprintf (stderr , "\n%s", s); err print (i, t); history ← fatal ; exit (wrap up());
}

32. Some implementations may wish to pass the history value to the operating system so that it can be
used to govern whether or not other programs are started. Here, for instance, we pass the operating system
a status of 0 if and only if only harmless messages were printed.

〈 Internal functions 19 〉 +≡
int wrap up()
{
〈Print the job history 34 〉;
if (history > spotless) return 1;
else return 0;
}

14 REPORTING ERRORS TO THE USER The CTIE processor §33

33. Always good to prototype.

〈Predeclaration of functions 5 〉 +≡
int wrap up();

34. We report the history to the user, although this may not be “UNIX” style—but we are in good company:
WEB and TEX do the same. We put this on stdout rather than stderr , so that users can easily filter this away
if they wish.

〈Print the job history 34 〉 ≡
switch (history) {
case spotless : printf ("\n(No errors were found.)\n"); break;
case troublesome : printf ("\n(Pardon me, but I think I spotted something wrong.)\n"); break;
case fatal : printf ("(That was a fatal error, my friend.)\n");
} . there are no other cases /

This code is used in section 32.

35. If there’s a system error, we may be able to give the user more information with the pfatal error
function. This prints out system error information if it is available.

〈Predeclaration of functions 5 〉 +≡
void pfatal error ();

36. 〈Error handling functions 29 〉 +≡
void pfatal error (s, t)

char ∗s, ∗t;
{

char ∗strerr ← strerror (errno);

fprintf (stderr , "\n%s%s", s, t);
if (strerr) fprintf (stderr , " (%s)\n", strerr);
else fprintf (stderr , "\n");
history ← fatal ; exit (wrap up());
}

37. We need an include file for the above.

〈Global #includes 8 〉 +≡
#include <errno.h>

§38 The CTIE processor HANDLING MULTIPLE CHANGE FILES 15

38. Handling multiple change files. In the standard version we take the name of the files from the
command line. It is assumed that filenames can be used as given in the command line without changes.

First there are some sections to open all files. If a file is not accessible, the run will be aborted. Otherwise
the name of the open file will be displayed.

〈Prepare the output file 38 〉 ≡
{

out file ← fopen (out name , "w");
if (out file ≡ Λ) {

pfatal error ("! Cannot open/create output file", "");
}
}

This code is used in section 3.

39. The name of the file and the file desciptor are stored in global variables.

〈Global variables 7 〉 +≡
FILE ∗out file ;
string out name ;

40. For the master file we start by reading its first line into the buffer, if we could open it.

〈Get the master file started 40 〉 ≡
{

input organisation [0]~ the file ← fopen (input organisation [0]~file name , "r");
if (input organisation [0]~ the file ≡ Λ)

pfatal error ("! Cannot open master file ", input organisation [0]~file name);
printf ("(%s)\n", input organisation [0]~file name); input organisation [0]~ type of file ← master ;
get line (0, true);
}

This code is used in section 3.

41. For the change files we must skip any comment part and see whether there are any changes in it. This
is done by init change file .

〈Prepare the change files 41 〉 ≡
{

file index i;

i← 1;
while (i < no ch) {

input organisation [i]~ the file ← fopen (input organisation [i]~file name , "r");
if (input organisation [i]~ the file ≡ Λ)

pfatal error ("! Cannot open change file ", input organisation [i]~file name);
printf ("(%s)\n", input organisation [i]~file name); init change file (i); i++;

}
}

This code is used in section 3.

16 INPUT/OUTPUT ORGANISATION The CTIE processor §42

42. Input/output organisation. Here’s a simple function that checks if two lines are different.

〈 Internal functions 19 〉 +≡
boolean lines dont match (i, j)

file index i, j;
{

register input description ∗iptr ← input organisation [i], ∗jptr ← input organisation [j];

if (iptr~ limit − iptr~buffer 6= jptr~ limit − jptr~buffer) return true ;
return strncmp(iptr~buffer , jptr~buffer , iptr~ limit − iptr~buffer);
}

43. Function init change file (i) is used to ignore all lines of the input file with index i until the next change
module is found.

〈 Internal functions 19 〉 +≡
void init change file (i)

file index i;
{

register input description ∗inp desc ← input organisation [i];
char ccode ;

inp desc~ limit ← inp desc~buffer ; 〈 Skip over comment lines; return if end of file 44 〉
〈 Skip to the next nonblank line; return if end of file 45 〉
inp desc~dont match ← 0;
}

44. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y, @z or @i (which would probably mean that the change file is fouled up).

〈 Skip over comment lines; return if end of file 44 〉 ≡
while (1) {

if (¬get line (i, false)) return; . end of file reached /
if (inp desc~ limit < inp desc~buffer + 2) continue;
if (inp desc~buffer [0] 6= ’@’) continue;
ccode ← inp desc~buffer [1];
if (xisupper (ccode)) ccode ← tolower (ccode);
if (ccode ≡ ’x’) break;
if (ccode ≡ ’y’ ∨ ccode ≡ ’z’ ∨ ccode ≡ ’i’) {

inp desc~ loc ← inp desc~buffer + 2; err print (i, "! Missing @x in change file");
}
}

This code is used in section 43.

45. Here we are looking at lines following the @x.

〈 Skip to the next nonblank line; return if end of file 45 〉 ≡
do {

if (¬get line (i, true)) {
err print (i, "! Change file ended after @x"); return;

}
} while (inp desc~ limit ≡ inp desc~buffer);

This code is used in section 43.

§46 The CTIE processor INPUT/OUTPUT ORGANISATION 17

46. The put line function is used to write a line from input buffer j to the output file.

〈 Internal functions 19 〉 +≡
void put line (j)

file index j;
{

char ∗ptr ← input organisation [j]~buffer ;
char ∗lmt ← input organisation [j]~ limit ;

while (ptr < lmt) putc(∗ptr ++, out file);
putc(’\n’, out file);
}

47. The function e of ch module returns true if the input line from file i starts with @z.

〈 Internal functions 19 〉 +≡
boolean e of ch module (i)

file index i;
{

register input description ∗inp desc ← input organisation [i];

if (inp desc~ limit ≡ Λ) {
err print (i, "! Change file ended without @z"); return true ;

}
else if (inp desc~ limit ≥ inp desc~buffer + 2)

if (inp desc~buffer [0] ≡ ’@’ ∧ (inp desc~buffer [1] ≡ ’Z’ ∨ inp desc~buffer [1] ≡ ’z’)) return true ;
return false ;
}

48. The function e of ch preamble returns true if the input line from file i starts with @y.

〈 Internal functions 19 〉 +≡
boolean e of ch preamble (i)

file index i;
{

register input description ∗inp desc ← input organisation [i];

if (inp desc~ limit ≥ inp desc~buffer + 2 ∧ inp desc~buffer [0] ≡ ’@’)
if (inp desc~buffer [1] ≡ ’Y’ ∨ inp desc~buffer [1] ≡ ’y’) {

if (inp desc~dont match > 0) {
inp desc~ loc ← inp desc~buffer + 2; fprintf (stderr , "\n! Hmm... %d ", inp desc~dont match);
err print (i, "of the preceding lines failed to match");
}
return true ;

}
return false ;
}

18 INPUT/OUTPUT ORGANISATION The CTIE processor §49

49. To process the input file the next section reads a line of the current (actual) input file and updates
the input organisation for all files with index greater than actual input .

〈Process a line, break when end of source reached 49 〉 ≡
{

file index test file ;

〈Check the current files for any ends of changes 50 〉
if (input has ended ∧ actual input ≡ 0) break; . all done /
〈 Scan all other files for changes to be done 51 〉
〈Handle output 52 〉
〈 Step to next line 56 〉
}

This code is used in section 57.

50. Any of the current change files may have reached the end of the current change. In such a case,
intermediate lines must be skipped and the next start of change is to be found. This may make a change
file become inactive if the end of the file is reached.

〈Check the current files for any ends of changes 50 〉 ≡
{

register input description ∗inp desc ;

while (actual input > 0 ∧ e of ch module (actual input)) {
inp desc ← input organisation [actual input];
if (inp desc~ type of file ≡ master) { . emergency exit, everything mixed up! /

fatal error (−1, "! This can’t happen: change file is master file", "");
}
inp desc~mode ← search ; init change file (actual input);
while ((input organisation [actual input]~mode 6= reading ∧ actual input > 0)) actual input −−;

}
}

This code is used in section 49.

§51 The CTIE processor INPUT/OUTPUT ORGANISATION 19

51. Now we will set test input to the first change file that is being tested against the current line. If no
other file is testing, then actual input refers to a line to write and test input is set to none .

#define none (−1)

〈 Scan all other files for changes to be done 51 〉 ≡
test input ← none ; test file ← actual input ;
while (test input ≡ none ∧ test file < no ch − 1) {

test file ++;
switch (input organisation [test file]~mode) {
case search :

if (lines dont match (actual input , test file) ≡ false) {
input organisation [test file]~mode ← test ; test input ← test file ;

}
break;

case test :
if (lines dont match (actual input , test file)) {

. error, sections do not match; just note at this point /
input organisation [test file]~dont match ++;

}
test input ← test file ; break;

case reading : . this can’t happen /
break;

case ignore : . nothing to do /
break;

}
}

This code is used in section 49.

52. For the output we must distinguish between whether we are creating a new change file or a new master
file. Change file creation requires closer inspection because we may be before a change, in the pattern
(match) part or in the replacement part. For master file creation, we simply have to write the line from the
current (actual) input.

〈Handle output 52 〉 ≡
if (prod chf ≡ chf) {

while (1) {
〈Test for normal , break when done 53 〉
〈Test for pre , break when done 54 〉
〈Test for post , break when done 55 〉

}
}
else if (test input ≡ none) put line (actual input);

This code is used in section 49.

53. Check whether we have to start a change file entry. Without a match nothing needs to be done.

〈Test for normal , break when done 53 〉 ≡
if (out mode ≡ normal) {

if (test input 6= none) {
fprintf (out file , "@x\n"); out mode ← pre ;

}
else break;
}

This code is used in section 52.

20 INPUT/OUTPUT ORGANISATION The CTIE processor §54

54. Check whether we have to start the replacement text. This is the case when we are in pre mode but
have no more matching lines. Otherwise the master file source line must be copied to the change file.

〈Test for pre , break when done 54 〉 ≡
if (out mode ≡ pre) {

if (test input ≡ none) {
fprintf (out file , "@y\n"); out mode ← post ;

}
else {

if (input organisation [actual input]~ type of file ≡ master) put line (actual input);
break;

}
}

This code is used in section 52.

55. Check whether an entry from a change file is complete. If the current input is from a change file which
is not being tested against a later change file, then this change file line must be written. If the actual input
has been reset to the master file, we can finish this change.

〈Test for post , break when done 55 〉 ≡
if (out mode ≡ post) {

if (input organisation [actual input]~ type of file ≡ chf) {
if (test input ≡ none) put line (actual input);
break;

}
else {

fprintf (out file , "@z\n\n"); out mode ← normal ;
}
}

This code is used in section 52.

56. If we had a change, we must proceed in the actual file to be changed and in the change file in effect.

〈 Step to next line 56 〉 ≡
get line (actual input , true);
if (test input 6= none) {

get line (test input , true);
if (e of ch preamble (test input) ≡ true) {

get line (test input , true); . update current changing file /
input organisation [test input]~mode ← reading ; actual input ← test input ; test input ← none ;

}
}

This code is used in section 49.

57. To create the new output file we have to scan the whole master file and all changes in effect when it
ends. At the very end it is wise to check for all changes to have completed, in case the last line of the master
file was to be changed.

〈Process the input 57 〉 ≡
actual input ← 0; input has ended ← false ;
while (input has ended ≡ false ∨ actual input 6= 0)
〈Process a line, break when end of source reached 49 〉

if (out mode ≡ post) . last line has been changed /
fprintf (out file , "@z\n");

This code is used in section 3.

§58 The CTIE processor INPUT/OUTPUT ORGANISATION 21

58. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in the master file or any of the change files.

〈Check that all changes have been read 58 〉 ≡
{

file index i;

for (i← 1; i < no ch ; i++) { . all change files /
if (input organisation [i]~mode 6= ignore) {

input organisation [i]~ loc ← input organisation [i]~buffer ;
err print (i, "! Change file entry did not match");

}
}
}

This code is used in section 3.

59. We want to tell the user about our command line options if they made a mistake. This is done by the
usage error () function. It contains merely the necessary print statements and exits afterwards.

〈 Internal functions 19 〉 +≡
void usage error ()
{
〈Print the banners 60 〉;
fprintf (stderr , "Usage: ctie −[mc] outfile master changefile(s)\n");
fprintf (stderr , "Type ctie −−help for more information\n"); exit (1);
}

60. Printing our welcome banners; we only do this if we are not asked for version or help information.

〈Print the banners 60 〉 ≡
printf ("%s\n", banner); . print a “banner line” /
printf ("%s\n", copyright); . include the copyright notice /

This code is used in sections 3 and 59.

22 INPUT/OUTPUT ORGANISATION The CTIE processor §61

61. We must scan through the list of parameters, given in argv . The number is in argc . We must pay
attention to the flag parameter. We need at least 3 parameters (−m or −c, an output file and a master file)
and can handle up to max file index change files. The names of the file parameters will be inserted into the
structure of input organisation . The first file is special. It indicates the output file. When we allow flags
at any position, we must find out which name is for what purpose. The master file is already part of the
input organisation structure (index 0). As long as the number of files found (counted in no ch) is −1 we
have not yet found the output file name.

〈 Scan the parameters 61 〉 ≡
{

if (argc > max file index + 5− 1) usage error ();
no ch ← −1; . fill this part of input organisation /
while (−−argc > 0) {

argv ++;
if (strcmp("−help", ∗argv) ≡ 0∨ strcmp("−−help", ∗argv) ≡ 0) 〈Display help message and exit 64 〉;
if (strcmp("−version", ∗argv) ≡ 0 ∨ strcmp("−−version", ∗argv) ≡ 0)
〈Display version information and exit 65 〉;

if (∗∗argv ≡ ’−’) 〈Set a flag 62 〉
else 〈Get a file name 63 〉

}
if (no ch ≤ 0 ∨ prod chf ≡ unknown) usage error ();
}

This code is used in section 3.

62. The flag is about to determine the processing mode. We must make sure that this flag has not been
set before. Further flags might be introduced to avoid/force overwriting of output files. Currently we just
have to set the processing flag properly.

〈 Set a flag 62 〉 ≡
if (prod chf 6= unknown) usage error ();
else

switch (∗(∗argv + 1)) {
case ’c’: case ’C’: prod chf ← chf ; break;
case ’m’: case ’M’: prod chf ← master ; break;
default: usage error ();
}

This code is used in section 61.

§63 The CTIE processor INPUT/OUTPUT ORGANISATION 23

63. We have to distinguish whether this is the very first file name (which is the case if no ch ≡ (−1)) or
if the next element of input organisation must be filled.

〈Get a file name 63 〉 ≡
{

if (no ch ≡ (−1)) {
out name ← ∗argv ;

}
else {

register input description ∗inp desc ;

inp desc ← (input description ∗) malloc(sizeof (input description));
if (inp desc ≡ Λ) fatal error (−1, "! No memory for input descriptor", "");
inp desc~mode ← search ; inp desc~ line ← 0; inp desc~ type of file ← chf ;
inp desc~ limit ← inp desc~buffer ; inp desc~buffer [0]← ’ ’; inp desc~ loc ← inp desc~buffer + 1;
inp desc~buffer end ← inp desc~buffer + buf size − 2; inp desc~file name ← ∗argv ;
inp desc~current include ← Λ; input organisation [no ch]← inp desc ;

}
no ch ++;
}

This code is used in section 61.

64. Modules for dealing with help messages and version info. We follow the kpathsea standard code here,
so that we can easily adapt this to work with kpathsea.

〈Display help message and exit 64 〉 ≡
usage help();

This code is used in section 61.

65.

〈Display version information and exit 65 〉 ≡
{

print version and exit ("CTIE", version number);
}

This code is used in section 61.

66. Here is the usage information for −−help.

〈Global variables 7 〉 +≡
string CTIEHELP[]← {"Usage: ctie −[mc] outfile master changefile(s)",

" Create a new master file or change file from the given",
" master (C)WEB file and changefiles.",
" All filenames are taken literally; no suffixes are added.", "",
"−m create a new master file from original (C)WEB and change file(s)",
"−c create a master change file for original (C)WEB file from changefile(s)",
"−−help display this help and exit",
"−−version display version information and exit",Λ};

67. 〈Predeclaration of functions 5 〉 +≡
void usage help();
void print version and exit ();

24 INPUT/OUTPUT ORGANISATION The CTIE processor §68

68. void usage help()
{

string ∗message ← CTIEHELP;

while (∗message) {
fputs (∗message , stdout); putchar (’\n’); ++message ;

}
putchar (’\n’); exit (0);
}

69. void print version and exit (name , version)
string name , version ;

{
printf ("%s %s\n",name , version); puts ("Copyright (C) 2002,2003 Julian Gilbey.");
puts ("There is NO warranty. This is free software. See the source");
puts ("code of CTIE for redistribution conditions."); exit (0);
}

§70 The CTIE processor SYSTEM-DEPENDENT CHANGES 25

70. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make CTIE work at a particular installation. It is usually best to design your
change file so that all changes to previous modules preserve the module numbering; then everybody’s version
will be consistent with the printed program. More extensive changes, which introduce new modules, can be
inserted here; then only the index itself will get a new module number.

26 INDEX The CTIE processor §71

71. Index.

−−help: 64.
−−version: 65.
__STDC__: 9.
idsc: 14.
indsc: 13.

actual input : 16, 17, 49, 50, 51, 52, 54, 55, 56, 57.
argc : 3, 61.
argv : 3, 61, 62, 63.
banner : 1, 60.
boolean: 4, 19, 22, 42, 47, 48.
buf size : 6, 14, 63.
buffer : 14, 19, 20, 24, 26, 29, 30, 42, 43, 44,

45, 46, 47, 48, 58, 63.
buffer end : 14, 20, 24, 63.
c: 20, 24.
Cannot open change file: 41.
Cannot open include file: 27.
Cannot open master file: 40.
Cannot open/create output file: 38.
ccode : 43, 44.
Change file ended without @z: 47.
Change file ended...: 45.
Change file entry ...: 58.
chf : 10, 52, 55, 62, 63.
copyright : 1, 60.
CTIEHELP: 66, 68.
current include : 14, 19, 25, 27, 30, 63.
CWEBINPUTS: 27.
do includes : 19.
dont match : 14, 43, 48, 51.
e of ch module : 47, 50.
e of ch preamble : 48, 56.
EOF: 20, 24.
err print : 20, 24, 26, 27, 28, 29, 31, 44, 45,

47, 48, 58.
errno : 36.
exit : 3, 31, 36, 59, 68, 69.
false : 4, 19, 21, 22, 44, 47, 48, 51, 57.
fatal : 7, 31, 34, 36.
fatal error : 27, 31, 50, 63.
fclose : 21, 25.
feof : 20, 24.
fflush : 23, 29.
file index: 12, 16, 19, 29, 41, 42, 43, 46, 47,

48, 49, 58.
file name : 13, 14, 27, 30, 40, 41, 63.
file name end : 27.
file no : 28.
file types: 10, 14, 16.
fopen : 27, 38, 40, 41.
fp : 19, 20, 21, 24, 25.

fprintf : 29, 30, 31, 36, 48, 53, 54, 55, 57, 59.
fputs : 68.
free : 25, 27.
get line : 19, 40, 44, 45, 56.
getc : 20, 24.
getenv : 27.
history : 7, 29, 31, 32, 34, 36.
i: 19, 29, 41, 42, 43, 47, 48, 58.
ignore : 10, 19, 21, 51, 58.
in file modes: 10, 14.
inc desc : 19, 24, 25, 30.
Include file name ...: 26, 27.
include description: 13, 14, 19, 25, 27, 30.
init change file : 41, 43, 50.
inp desc : 19, 20, 21, 23, 24, 25, 26, 27, 30, 43,

44, 45, 47, 48, 50, 63.
Input line too long: 20, 24.
input description: 14, 18, 19, 30, 42, 43, 47,

48, 50, 63.
input has ended : 21, 22, 49, 57.
input organisation : 18, 19, 30, 40, 41, 42, 43, 46,

47, 48, 49, 50, 51, 54, 55, 56, 58, 61, 63.
iptr : 42.
isupper : 6.
j: 42, 46.
jptr : 42.
k: 20, 24, 27, 29.
kk : 27.
l: 27, 29.
limit : 14, 19, 20, 21, 24, 26, 27, 30, 42, 43, 44,

45, 46, 47, 48, 63.
line : 13, 14, 19, 23, 24, 27, 30, 63.
lines dont match : 42, 51.
lmt : 46.
loc : 14, 20, 24, 26, 27, 30, 44, 48, 58, 63.
main : 3.
malloc : 27, 63.
master : 10, 21, 23, 30, 40, 50, 54, 62.
max file index : 6, 12, 18, 61.
max file name length : 13, 15, 27.
max include files : 15, 26.
message : 68.
Missing @x...: 44.
mode : 14, 19, 21, 50, 51, 56, 58, 63.
name : 69.
new inc : 27.
No memory for descriptor: 63.
no ch : 16, 41, 51, 58, 61, 63.
none : 51, 52, 53, 54, 55, 56.
normal : 11, 17, 53, 55.
out file : 38, 39, 46, 53, 54, 55, 57.

§71 The CTIE processor INDEX 27

out md type: 11, 16.
out mode : 16, 17, 53, 54, 55, 57.
out name : 38, 39, 63.
parent : 13, 25, 27.
pfatal error : 35, 36, 38, 40, 41.
post : 11, 54, 55, 57.
pre : 11, 53, 54.
print version and exit : 65, 67, 69.
printf : 23, 34, 40, 41, 60, 69.
prod chf : 16, 52, 61, 62.
ptr : 46.
put line : 46, 52, 54, 55.
putc : 29, 30, 46.
putchar : 23, 68.
puts : 69.
reading : 10, 50, 51, 56.
restart : 19, 25, 26, 27.
s: 29, 36.
search : 10, 50, 51, 63.
spotless : 7, 32, 34.
stderr : 8, 29, 30, 31, 34, 36, 48, 59.
stdin : 8.
stdout : 8, 23, 34, 68.
strcmp : 61.
strcpy : 5, 27.
strerr : 36.
strerror : 5, 36.
string: 3, 4, 14, 39, 66, 68, 69.
strlen : 5, 27.
strncmp : 5, 42.
strncpy : 5.
system dependencies: 6, 9, 30, 32, 34, 70.
t: 36.
tab character expansion: 19, 20.
temp : 25.
temp file name : 27.
test : 10, 51.
test file : 49, 51.
test input : 16, 51, 52, 53, 54, 55, 56.
the file : 13, 14, 19, 27, 40, 41.
This can’t happen...: 50.
tolower : 44.
Too many nested includes: 26.
too long : 27.
total include files : 15, 25, 26, 27.
troublesome : 7, 29, 34.
true : 4, 19, 21, 40, 42, 45, 47, 48, 56.
type of file : 14, 21, 23, 30, 40, 50, 54, 55, 63.
ungetc : 20, 24.
unknown : 10, 16, 61, 62.
usage error : 59, 61, 62.
usage help : 64, 67, 68.

version : 69.
version number : 1, 65.
wrap up : 3, 31, 32, 33, 36.
xisupper : 6, 44.

28 NAMES OF THE SECTIONS The CTIE processor

〈Check for @i in newly read line, goto restart if include fails 26 〉 Used in section 19.

〈Check that all changes have been read 58 〉 Used in section 3.

〈Check the current files for any ends of changes 50 〉 Used in section 49.

〈Display help message and exit 64 〉 Used in section 61.

〈Display version information and exit 65 〉 Used in section 61.

〈Error handling functions 29, 36 〉 Used in section 2.

〈Get a file name 63 〉 Used in section 61.

〈Get include line into buffer or goto restart if end of file 24 〉 Used in section 19.

〈Get line into buffer, return false if end of file 20 〉 Used in section 19.

〈Get the master file started 40 〉 Used in section 3.

〈Global #includes 8, 9, 37 〉 Used in section 2.

〈Global types 4, 10, 11, 12, 13, 14 〉 Used in section 2.

〈Global variables 7, 15, 16, 18, 22, 39, 66 〉 Used in section 2.

〈Handle end of file and return 21 〉 Used in section 20.

〈Handle end of include file and goto restart 25 〉 Used in section 24.

〈Handle output 52 〉 Used in section 49.

〈 Increment the line number and print a progess report at certain times 23 〉 Used in section 20.

〈 Initialise parameters 17 〉 Used in section 3.

〈 Internal functions 19, 32, 42, 43, 46, 47, 48, 59 〉 Used in section 2.

〈Predeclaration of functions 5, 28, 33, 35, 67 〉 Used in section 2.

〈Prepare the change files 41 〉 Used in section 3.

〈Prepare the output file 38 〉 Used in section 3.

〈Print error location based on input buffer 30 〉 Used in section 29.

〈Print the banners 60 〉 Used in sections 3 and 59.

〈Print the job history 34 〉 Used in section 32.

〈Process a line, break when end of source reached 49 〉 Used in section 57.

〈Process the input 57 〉 Used in section 3.

〈 Scan all other files for changes to be done 51 〉 Used in section 49.

〈 Scan the parameters 61 〉 Used in section 3.

〈 Set a flag 62 〉 Used in section 61.

〈 Skip over comment lines; return if end of file 44 〉 Used in section 43.

〈 Skip to the next nonblank line; return if end of file 45 〉 Used in section 43.

〈 Step to next line 56 〉 Used in section 49.

〈Test for normal , break when done 53 〉 Used in section 52.

〈Test for post , break when done 55 〉 Used in section 52.

〈Test for pre , break when done 54 〉 Used in section 52.

〈The main function 3 〉 Used in section 2.

〈Try to open include file, abort push if unsuccessful, go to restart 27 〉 Used in section 26.

	Introduction
	Input and output
	Data structures
	File I/O
	Reporting errors to the user
	Handling multiple change files
	Input/output organisation
	System-dependent changes
	Index
	Names of the sections
	Check for @i in newly read line, goto restart if include fails
	Check that all changes have been read
	Check the current files for any ends of changes
	Display help message and exit
	Display version information and exit
	Error handling functions
	Get a file name
	Get include line into buffer or goto restart if end of file
	Get line into buffer, return false if end of file
	Get the master file started
	Global #includes
	Global types
	Global variables
	Handle end of file and return
	Handle end of include file and goto restart
	Handle output
	Increment the line number and print a progess report at certain times
	Initialise parameters
	Internal functions
	Predeclaration of functions
	Prepare the change files
	Prepare the output file
	Print error location based on input buffer
	Print the banners
	Print the job history
	Process a line, break when end of source reached
	Process the input
	Scan all other files for changes to be done
	Scan the parameters
	Set a flag
	Skip over comment lines; return if end of file
	Skip to the next nonblank line; return if end of file
	Step to next line
	Test for normal, break when done
	Test for post, break when done
	Test for pre, break when done
	The main function
	Try to open include file, abort push if unsuccessful, go to restart

