How to Package Your IXTEX Package

Scott Pakin <scott+dtx@pakin.org>

21 January 2024

Abstract

This tutorial is intended for advanced IATEX 2¢ users who want to
learn how to create .ins and .dtx files for distributing their home-
brewed classes and style files.

1 Introduction

Requirements We assume that you already know how to program in IXTEX.
That is, you should know how to use \newcommand, \newenvironment, and
preferably a smidgen of TEX. You should also be familiar with “IATEX 2¢
for Class and Package Writers”, which is available from CTAN (http://
www.ctan.org) and comes with most ITEX 2¢ distributions in a file called
clsguide.pdf. Finally, you should know how to install packages that are
shipped as a .dtx file plus a .ins file.

Terminology A class (.cls) file specifies a document’s basic formatting:
text block size and positioning on the page, typesetting of structural elements
such as \section, header and footer style, etc. Exactly only class file is used
in a single document (with \documentclass).

A style (.sty) file is primarily a collection of macro and environment defini-
tions. Style files can override the class file’s formatting decisions, provide
new functionality, or change existing functionality. A document can load any
number of style files (with \usepackage).

One or more class or style files (e.g., a main style file that uses \input
or \RequirePackage to load multiple helper files) and their documentation
is called a package. In the rest of this document, we use the notation

http://www.ctan.org
http://www.ctan.org

“(package)” to represent the name of your package. Warning: In the IATEX
community, the term “package” is sometimes also used to mean “style file”.
You may need to discern from context which definition is being used.

Motivation The important parts of a package are the code, the docu-
mentation of the code, and the user documentation. Using the Doc and
DocStrip programs, it’s possible to combine all three of these into a single,
documented BTEX (.dtx) file. The primary advantage of a .dtx file is that
it enables you to use arbitrary IXTEX constructs to comment your code.
Hence, macros, environments, code stanzas, variables, and so forth can be
explained using tables, figures, mathematics, and font changes. Code can
be organized into sections using I¥TEX’s sectioning commands. Doc even
facilitates generating a unified index that indexes both macro definitions (in
the KTEX code) and macro descriptions (in the user documentation). This
emphasis on writing verbose, nicely typeset comments for code—essentially
treating a program as a book that describes a set of algorithms—is known
as literate programming [2] and has been in use since the early days of TEX.

This tutorial will teach you how to write basic .dtx files and the .ins files
that manipulate them. Although there is much overlap with chapter 14 of
The BTEX Companion [I], this document is structured as a step-by-step
tutorial, while The BTgX Companion is more reference-like. Furthermore,
this tutorial shows how to write a single file that serves as both documentation
and driver file, which is a more typical usage of the Doc system than using
separate files.

2 The .ins file

The first step in preparing a package for distribution is to write an installer
(.ins) file. An installer file extracts the code from a .dtx file, uses DocStrip
to strip off the comments and documentation, and outputs a .sty file. The
good news is that a .ins file is typically fairly short and doesn’t change
significantly from one package to another.

.ins files usually start with comments specifying the copyright and license
information:

hoth
%% Copyright (C) (year) (your name)

ho
o
o
hhh
hh
ho
o
o
hhh
hh
hh

This file may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either
version 1.3 of this license or (at your option) any later
version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of
LaTeX version 2008-05-04 or later.

The KWTEX Project Public License (LPPL) is the license under which most
packages—and ITEX itself—are distributed. Of course, you can release your
package under any license you want; the LPPL is merely the most common
license for KWTEX packages. The LPPL specifies that a user can do whatever
he wants with your package—including sell it and give you nothing in return.
The only restrictions are that he must give you credit for your work, and he
must unambiguously identify modified versions of the code as such to avoid

versioning confusion.

The next step is to load DocStrip:

\input docstrip.tex

\keepsilent

By default, DocStrip gives a line-by-line account of its activity. These
messages aren’t terribly useful, so most people turn them off:

\keepsilent

[\usedir {{directory)} |

A system administrator can specify the base directory under which
all TgX-related files should be installed, e.g., /usr/share/texmf. (See

“\BaseDirectory’

)

in the DocStrip manual.) The .ins file specifies where its

files should be installed relative to that. The following is typical:

\usedir{tex/latex/(package)}

\preamble
(text)
\endpreamble

The next step is to specify a preamble, which is a block of commentary that
will be written to the top of every generated file:

\preamble
This is a generated file.
Copyright (C) (year) (your name)

This file may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either
version 1.3 of this license or (at your option) any later
version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of
LaTeX version 2008-05-04 or later.

\endpreamble

The preceding preamble would cause (package).sty to begin as follows:

hth

%% This is file ~(package).sty',

%% generated with the docstrip utility.

hte

%% The original source files were:

hhh

%% (package).dtx (with options: “package')

he

%% This is a generated file.

hte

%% Copyright (C) (year) (your name)

hhh

%% This file may be distributed and/or modified under the
%/ conditions of the LaTeX Project Public License, either
%% version 1.3 of this license or (at your option) any later
%% version. The latest version of this license is in:

o

Dot http://www.latex-project.org/lppl.txt

o

%% and version 1.3c or later is part of all distributions of
%/ LaTeX version 2008-05-04 or later.

o

[\generate {\file {(style-file)} {\from {(dta-file)} {(tag)}}} |

We now reach the most important part of a .ins file: the specification of
what files to generate from the .dtx file. The following tells DocStrip to
generate (package).sty from (package).dtx by extracting only those parts
marked as “package” in the .dtx file. (Marking parts of a .dtx file is
described in Section [3])

\generate{\file{(package).styH\from{(package).dtx}{package}}}

\generate can extract any number of files from a given .dtx file. It can
even extract a single file from multiple .dtx files. See the DocStrip manual
for details.

\Msg {(text)}

The next part of a .ins file consists of commands to output a message to
the user, telling him what files need to be installed and reminding him how
to produce the user documentation. The following set of \Msg commands is

typical:
\obeyspaces
\Mis g { sk sk sk ok ke sk ke sk ke skt ok ke e sk ok ko ke sk ok ke sk
\Msg{* *}

\Msg{* To finish the installation you have to move the *}
\Msg{* following file into a directory searched by TeX: *}

\Msg{* *}
\Msg{* (package) . sty *}
\Msg{* *}
\Msg{* To produce the documentation run the file *}
\Msg{* (package).dtx through LaTeX. *}
\Msg{* *}
\Msg{* Happy TeXing! *}
\Msg{* *}

Note the use of \obeyspaces to inhibit TEX from collapsing multiple spaces
into one.

[\endbatchfile |

Finally, we tell DocStrip that we’ve reached the end of the .ins file:
\endbatchfile

Appendix lists a complete, skeleton .ins file. Appendix is similar
but contains slight modifications intended to produce a class (.cls) file
instead of a style (.sty) file.

3 The .dtx file

A .dtx file contains both the commented source code and the user documen-
tation for the package. Running a .dtx file through latex typesets the user
documentation, which usually also includes a nicely typeset version of the
commented source code.

Due to some Doc trickery, a .dtx file is actually evaluated twice. The first
time, only a small piece of INTEX driver code is evaluated. The second time,
comments in the .dtx file are evaluated, as if there were no “%,” preceding
them. This can lead to a good deal of confusion when writing .dtx files
and occasionally leads to some awkward constructions. Fortunately, once
the basic structure of a .dtx file is in place, filling in the code is fairly
straightforward.

3.1 Prologue

.dtx files generally begin with a copyright and license comment:

% \iffalse meta-comment
% Copyright (C) (year) (your name)
% This file may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either
% version 1.3 of this license or (at your option) any later

% version. The latest version of this license is in:
% http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of
% LaTeX version 2008-05-04 or later.

% \fi

The \iffalse and \fi are needed because the second time the .dtx file is
processed, % characters at the beginning of lines are ignored. To prevent the
copyright /license from being evaluated as KTEX code, we have to surround it
with \iffalse...\fi. Adding “meta-comment” after “\iffalse” is nothing
more than a convention for indicating that the comment is intended to be
read by a human, not by Doc, DocStrip, or KTEX.

\NeedsTeXFormat {(format-name)} [{release-date)]
\ProvidesPackage {(package-name)} [(release-info)]

The next few lines are also surrounded by \iffalse...\fi so as not to be
processed by latex on the second pass through the .dtx file. However,
these lines are intended not for a human reader, but for DocStrip (hence, no
“meta-comment”):

% \iffalse

%<package>\NeedsTeXFormat{LaTeX2e} [2023-11-01]
%<package>\ProvidesPackage{(package)}

%i<package> [(YYYY)-(MM)-(DD) v{version) (description)]
h

(We’ll encounter the \fi shortly.)

Remember the \generate line in the . ins file (page5)? It ended with the tag
“package”. This tells DocStrip to write lines that begin with “J<package>”
to the .sty file, stripping off the “%<package>” in the process. Hence, our
.sty file will include the following code right after the header comments:

\NeedsTeXFormat{LaTeX2e}[2023-11-01]
\ProvidesPackage{(package)}
(YYYY)-(MM)-(DD) v(version) (description)]

For example:

\NeedsTeXFormat{LaTeX2e} [2023-11-01]
\ProvidesPackage{skeleton}
[2002-03-25 v1.0 .dtx skeleton file]

The \NeedsTeXFormat line ensures that the package won’t run under a TEX
format other than IATEX 2¢. The optional date argument causes latex to
output a warning message if the version of ITEX 2¢ (which can be found via
ITEX 2¢’s \fmtversion macro) is older than what the package was tested
with:

LaTeX Warning: You have requested release ~2239-09-30' of LaTeX,
but only release ~2023-11-01' is available.

The date and version strings in the \ProvidesPackage line are used by Doc
to set the \filedate and \fileversion macros. Note the date format;
YYYY-MM-DD is used throughout IATEX 2¢ and should be used in your
packages as WGHEI

\EnableCrossrefs
\CodelineIndex
\RecordChanges
\DocInput {(filename)}

Next comes the only part of the .dtx file that isn’t commented out
(i.e., doesn’t begin each line with “%”):

%<*driver>
\documentclass{ltxdoc}
\usepackage{(package)}
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\begin{document}
\DocInput{({package).dtx}
\end{document}
%</driver>

% \fi

!Older versions of IXTEX 2¢ expected the YYYY/MM/DD format, but the latest pack-
age/class author guide [3] specifies that YYYY-MM-DD should be used from now on.

The preceding code stanza is what latex evaluates on its first pass through
the .dtx file. We'll now examine that stanza line-by-line:

1. Putting code between “Y%<*driver>” and “%</driver>” is a DocStrip
shorthand for prefixing each line with “Y<driver>”. This demarcates
the Doc driver code.

2. The \documentclass should almost always be 1ltxdoc as that loads
Doc and provides a few useful macros for formatting program docu-
mentation.

3. You should always \usepackage your style file. If you don’t, Doc won’t
see the package’s \ProvidesPackage line and won’t know how to set
\filedate and \fileversion (see page . This is also where you
should \usepackage any other packages needed to typeset the user
documentation (as opposed to packages needed by your package).

4. \EnableCrossrefs tells Doc that you want it to construct an in-
dex for your code—mnormally a good idea. The alternative is
\DisableCrossrefs, which speeds up processing by a negligible
amount.

5. \CodelineIndex tells Doc that the index should refer to program line
numbers instead of page numbers. (The alternative is \PageIndex.)
\CodelineIndex makes index entries easier to find at the expense of
making the index less self-consistent (because descriptions of macros
and environments are always indexed by page number). The index
does, however, begin with a note of explanation.

6. Page [L0] discusses how to log the changes made in each revision of the
package. \RecordChanges tells Doc that it should keep and aggregate
the log entries.

7. There should be only one command between the \begin{document}
and \end{document}: a \DocInput call with which the .dtx file inputs
itself. This enables a master file to \DocInput multiple files in order
to produce a single document that covers more than one package but
contains a unified index. Master documentation files are described on

page 22,

| \OnlyDescription |

Another command that sometimes appears in the preamble (i.e., before the
\begin{document}) is \OnlyDescription, which tells Doc to typeset only
the user documentation, not the package code/comments. It’s usually best to
omit \OnlyDescription (or add it commented out). A user always can add
it manually or even enable \OnlyDescription for all .dtx files by adding
the following to his 1txdoc.cfg file:

\AtBeginDocument{\OnlyDescription}

The remainder of this section covers latex’s second pass through the .dtx
file. Consequently, all subsequent examples are prefixed with percent signs.

[\changes {(version)} {{date)} {(description)} |

On page [9) we learned that Doc has a mechanism for recording changes to the
package. The command is “\changes{(version)}{(date)}{(description)}”,
and it’s common to use \changes for the initial version of the package to
log the package’s creation date:

% \changes{v1.0}{2002/03/25}{Initial version}

One nice feature of the \changes command is that it knows whether it
was used internally to a macro/environment definition. As Figure |1| shows,
top-level changes are prefixed with “General:”, and internal changes are
prefixed with the name of the enclosing macro or environment.

Change History

v1.0

General: Top-level comment 1
v1.2j

myMacro: Internal macro comment)

Figure 1: Sample change history

10

\GetFileInfo {(style-file)}

\filedate
\fileversion
\fileinfo

Next, we tell Doc to parse the \ProvidesPackage command (page [7)), call-
ing the three components of \ProvidesPackage’s argument, respectively,
\filedate, \fileversion, and \fileinfo:

% \GetFileInfo{(package).sty}

For instance, the \ProvidesPackage example shown on page [§ would be
parsed as follows:

\filedate = 2002-03-25
\fileversion = v1.0
\fileinfo = .dtx skeleton file

’ \DoNotIndex {(macro-name , ...)}

When producing an index, Doc normally indexes every control sequence
(i.e., backslashed word or symbol) in the code. The problem with this level
of automation is that many control sequences are uninteresting from the
perspective of understanding the code. For example, a reader probably
doesn’t want to see every location where \if is used—or \the or \let or
\begin or any of numerous other control sequences.

As its name implies, the \DoNotIndex command gives Doc a list of control
sequences that should not be indexed. \DoNotIndex can be used any number
of times, and it accepts any number of control sequence names per invocation:

% \DoNotIndex{\#,\$,\%,\&,\Q\\ ,\{,\F,\",_,\7,\ F
% \DoNotIndex{\@ne}

% \DoNotIndex{\advance,\begingroup,\catcode,\closein}
% \DoNotIndex{\closeout,\day,\def,\edef,\else,\empty, \endgroup}

3.2 User documentation

We finally can start writing the user documentation. A typical beginning
looks like this:

11

% \title{The \textsf{(package)} package\thanks{This document
% corresponds to \textsf{(package)} \fileversion,

% dated™\filedate.}}

% \author{(your name) \\ \texttt{(your e-mail address)}}

h

% \maketitle

The title certainly can be more creative, but note that it’s common for
package names to be typeset with \textsf and for \thanks to be used to
specify the package version and date. This yields one of the advantages
of literate programming: Whenever you change the package version (the
optional second argument to \ProvidesPackage), the user documentation
is updated accordingly. Of course, you still have to ensure manually that the
user documentation accurately describes the updated package.

Write the user documentation as you would any IXTEX document, except
that you have to precede each line with a “%”. Note that the 1ltxdoc
document class is derived from article so the top-level sectioning command
is \section, not \chapter.

\DescribeMacro {(macro)?}
\DescribeEnv {(environment)}

Doc provides a couple of commands to help format user documentation.
If you include “\DescribeMacro{(macro)}”EI within a paragraph, Doc will
stick “(macro)” in the margin to make it easy for a reader to see. Doc also
will add (macro) to the index and format the corresponding page number to
indicate that this is where the macro is described (as opposed to the place
in the source code where the macro is defined).

\DescribeEnv is the analogous command for describing an environment.
Both \DescribeMacro and \DescribeEnv can be used multiple times within
a paragraph.

| \NewDocElement [{options)] {({element-name)} {(env-name)} |

While ETEX documentation most commonly documents macros and
environments, \NewDocElement facilitates documenting arbitrary pack-
age components. It defines a \Describe(element-name) macro analo-
gous to \DescribeMacro and \DescribeEnv above. It then lets you

%(macro)” should include the backslash.

12

use \begin{(env-name)}...\end{(env-name)} to demarcate instances of
your new element, analogously to \begin{macro}...\end{macro} and
\begin{environment}...\end{environment}, which are described on
page The (options) argument specifies, among other things, whether the
new element is macrolike (begins with a backslash) or envlike (does not
begin with a backslash).

\marg {
\oarg {
\parg {
\meta {

argument)}
arqument)}
argument)}
text)}

o~ o~~~

The 1txdoc document class provides three commands to help typeset macro
and environment syntax (Table . \marg formats mandatory arguments,
\oarg formats optional arguments, and \parg formats picture arguments.
All three of these utilize \meta to typeset the argument proper. \meta also is
useful on its own. For example, “This needs a \meta{dimen}.” is typeset
as “This needs a (dimen).”

Table 1: Argument-formatting commands
Command Result
\marg{text} {(text)}
\oarg{text} [(text)]
\parg{text} ((text))

In addition to those commands, Doc facilitates the typesetting of macro
descriptions by automatically loading the shortvrb package. shortvrb
lets you use |... | as a convenient shorthand for \verb]...|. For instance,
“|\mymacro| \oarg{pos} \marg{width} \marg{text}” is typeset as follows:

\mymacro [{pos)] {(width)} {(text)}

Like \verb, the |... | shorthand does not work within \footnote or other
fragile macros.

13

3.3 Code and commentary

\MaybeStop {(text)}
\Finale

The package’s source code is delineated by putting it between \MaybeSto;ﬂ
and \Finale. \MaybeStop takes an argument, which is a block of text to
typeset after the code. If \OnlyDescription (page is specified, then
nothing after the \MaybeStop will be output—including text that follows
\Finale. \MaybeStop’s (text) parameter is therefore the mechanism for
providing a piece of text that should be output regardless of whether or not
a code listing is typeset. It commonly includes a bibliography section and/or
one or both of the following two commands:

\PrintChanges
\PrintIndex

\PrintChanges produces an unnumbered section called “Change History”.
(See Figure [L on page 10}) The Change History section aggregates all of
the \changes commands in the .dtx file into a single list of per-version
modifications. This makes it easy to keep track of what changed from version
to version.

\PrintChanges uses I#TEX’s glossary mechanism. Running latex on
(package) .dtx produces change-history data in (package).glo. To pro-
duce the typeset change history ((package).gls), the user should run the
makeindex program as follows:

makeindex -s gglo.ist -o (package).gls (package).glo

\PrintIndex produces an unnumbered section called “Index”. The index
automatically includes entries for all macros and environments that are used,
defined, or described in the document. All environments additionally are
listed under “environments”. Table [2| illustrates the way that various entries
are formatted. In that table, “27” refers to a page number, and “123” refers
to a line numberﬁ Note that macro/environment definitions and uses are
included in the index only if the document includes a code listing (i.e., if
\OnlyDescription was not specified).

3In older versions of Doc, \MaybeStop was called \StopEventually. The latter remains
defined but is deprecated.
4If \CodelineIndex (page [8) were not used then “123” would refer to a page number.

14

Table 2: Formatting of entries in the index

Item Function Formatting in index

Macro Used \myMacro 123
Macro Defined \myMacro 123
Macro Described \myMacro 27
Environment Defined myEnv (environment) 123
Environment Described myEnv (environment) 27
Explicit \index — myltem ...l 27

The default formatting for an explicit \index command uses a roman page
number. This leads to confusion, as roman page numbers otherwise indicate
line numbers in the package source code. The solution is to specify “usage”
formatting to the \index command, which typesets the page number in
italics:

\index{explicit indexing|usage}

Running latex on (package).dtx produces index data in (package).idx.
To produce the typeset index ({package).ind), the user should run the
makeindex program as follows:

makeindex -s gind.ist -o (package).ind (package).idx

A code index is a nice “value added” made possible by literate programming.
It requires virtually no extra effort and greatly helps code maintainers find
macro definitions and see what other macros a package depends upon.

\begin{macrocode}
(code)
\end{macrocode}

Code fragments listed between \begin{macrocode} and \end{macrocode}
are extracted verbatim into the .sty file. When typeset, the code fragments
are shown with a running line counter to make it easy to refer to a specific line.
Here are some key points to remember about the macrocode environment:

1. There must be exactly four spaces between the “%” and the
“\begin{macrocode}” or “\end{macrocode}”. Otherwise, Doc won’t

15

detect the end of the code fragmentﬂ

2. The lines of code within \begin{macrocode}...\end{macrocode}
should not begin with “%4”. The code gets written exactly as it is
to the .ins file, with no %-stripping.

The following is a sample code fragment. It happens to be a complete macro
definition, but this is not necessary; any fragment of ITEX code can appear
within a macrocode environment.

h \begin{macrocode}

\newcommand{\mymacro}{This is
a \LaTeX{} macro.}

% \end{macrocode}

Doc formats the preceding code fragment as follows:

1 \newcommand{\mymacro}{This is
> a \LaTeX{} macro.}

Note that line numbers are unique across the entire program (as opposed to
being reset at the top of each page). If \PrintIndex is used in the .dtx file
containing the preceding definition of \mymacro, the index will automatically
include entries for \newcommand, \mymacro, and \LaTeX, unless any of these
are \DoNotIndex’ed.

\begin{macro}{(macro)}

\end{macro}

\begin{environment}{(environment)}

\end{environment}

STrivia: Only the \end{macrocode} needs this precise spacing and then only for
typesetting the documentation. Nevertheless, it’s good practice to use “%....” for the
\begin{macrocode}, as well.

16

The macro and environment environments are used to delineate a complete
macro or environment definition. macro/environment environments gener-
ally contain one or more macrocode environments interspersed with code
documentation. The following is a more complete version of the macrocode
example shown on the preceding page.

% \begin{macro}{\mymacro}
% We define a trivial macro, |\mymacrol|, to illustrate
% the use of the |macrol| environment.
h \begin{macrocode}
\newcommand{\mymacro}{This is
a \LaTeX{} macro.}
% \end{macrocode}
% \end{macro}

The typeset version is shown below:

\mymacro We define a trivial macro, \mymacro, to illustrate the
use of the macro environment.
1 \newcommand{\mymacro}{This is
2 a \LaTeX{} macro.?}

Doc typesets the macro/environment name in the margin for increased
visibility. Doc also adds the appropriate entries to the index. (See Table
for examples of how these entries are formatted.) Note that
\begin{macro}...\end{macro} is not required to indicate a macro definition.
It can also be used to indicate definitions of other control sequences such as
counters, lengths, and boxes:

% \begin{macro}{myCounter}
% This is an example of using the |macro| environment to format
% something other than a macro.

% \begin{macrocode}
\newcounter{myCounter?}
% \end{macrocode}

% \end{macro}

macro and environment environments can be nested. This capability is
useful not only for macros that define other macros, but also when defining
a group of related datatypes that share a description:

17

% \begin{macro}{\thingheight}

% \begin{macro}{\thingwidth}

% \begin{macro}{\thingdepth}

% These lengths keep track of the dimensions of our |\thingl
% box. (Actually, we're just trying to show how to nest
% |macro| environments.)

% \begin{macrocode}

\newlength{\thingheight}

\newlength{\thingwidth}

\newlength{\thingdepth}

h \end{macrocode}

% \end{macro}

% \end{macro}

% \end{macro}

As a convenience, recent versions of Doc enable a single \begin{macro} to
list more than one macro to be defined:

% \begin{macro}{\thingheight,\thingwidth, \thingdepth}

% These lengths keep track of the dimensions of our |\thing]
% box. (Actually, we're just trying to show how to nest

% |macro| environments.)

% \begin{macrocode}

\newlength{\thingheight}

\newlength{\thingwidth}

\newlength{\thingdepth}

h \end{macrocode}

% \end{macro}

Descriptionless macro environments generally should be avoided, as the
formatting is a little ugly: the macro name appears on its own line, to the
left of an “empty” description, but the code doesn’t start until the next line.

There can be multiple macrocode environments within a \begin{macro}...
\end{macro} or \begin{environment}...\end{environment} block. This
is the mechanism by which code can be commented internally to a
macro/environment. (It’s considered bad style to use “%” for comments
within a macrocode block.) Here’s an example of the way that a nontrivial
macro might be commented:

% \begin{macro}{\complexMacro}
% Pretend that this is a very complex macro that needs

18

% to have its various pieces documented.
yA \begin{macrocode}
\newcommand{\complexMacro}{%

% \end{macrocode}
% Initialize all of our counters to zero.
h \begin{macrocode}

\setcounter{count@i}{03}7
\setcounter{count@ii}{0}%
\setcounter{count@iii}{0}%
\setcounter{count@iv}{0}/

yA \end{macrocode}

% \begin{macro}{\helperMacro}

% Define a helper macro for |\complexMacro| to use.

yA \begin{macrocode}
\def\helperMacro#1,#2,\relax{/

\someOtherMacro{#1}{#2}/,

%

yA \end{macrocode}

% Do some really complicated processing.

h \begin{macrocode}

% \end{macrocode}

% We're all finished now.
h \begin{macrocode}

}

% \end{macrocode}

% \end{macro}
% \end{macro}

Note how the above defines \helperMacro within \complexMacro. The
document introduces \helperMacro with a nested \begin{macro} that ends,
as is customary, with an \end{macro} placed before the outer macro’s
\end{macro} as opposed to immediately after \helperMacro's final “}”.

Appendix lists a complete, skeleton .dtx file that encapsulates a .sty
file and its documentation.

Class files The procedure to produce a class file from a .dtx file is far less
straightforward than the procedure to produce a style file. The problem is that
\DocInput relies on the \usepackage{(package)} line (more precisely, the

19

\ProvidesPackage line within (package).sty) to set the \fileversion and
\filedate macros. However, a class file can’t be loaded with \usepackage.
Nor can we simply load it with \documentclass{(package)} because only
one class can be loaded per document and we need that class to be 1txdoc.

The solution is to use \ProvidesFile to make the file version and date
available to the .dtx file. Appendix lists a complete, skeleton .dtx
file that encapsulates a .cls file and its documentation. It resembles the
skeleton file shown in Appendix but has a differently structured header
section.

4 Tips, tricks, and recommendations

e Write lots of good documentation! It really helps others understand
your code and the package as a whole.

e If you believe the M TEX community at large would be interested in
your package then you should upload it to CTAN at http://www.ctan!
org/upload. As a central repository of all things TEX-related, CTAN
makes it easier for others to find your IATEX package than if it were
located on your personal home page.

e When distributing your package, be sure to include a README file
describing what your package does as well as prebuilt documentation,
preferably as a PDF file. Prebuilt documentation saves users the
bother of having to download your package, install it, and build the
documentation before even knowing what the package is supposed to
do or if it meets their needs.

e Use HIEX’s sectioning commands to organize the code and
clarify its structure (e.g., \subsection{Initialization macros},
\subsection{Helper functions}, \subsection{Exported macros
and environments}, ...).

e Although commentary really belongs only in the typeset documentation,
it is also possible to write comments that are visible only in the .sty
file, in both the typeset documentation and the .sty file, or only in
the .dtx source. Table |3|shows how to control comment visibility.

e All lines between <*package> and </package>, except those within a
macrocode environment, should begin with “%”. Don’t use any blank
lines; these would get written to the .sty file (and oughtn’t).

20

http://www.ctan.org/upload
http://www.ctan.org/upload

e [t is good practice for TEX programs to use “@” within the names of
macros, lengths, counters, etc. that are declared globally, but intended
to be used only internally to the package. This prevents a user from
corrupting package state by inadvertently redefining package internalsﬁ
Another good practice is to prefix all global names that are internal
to the package with the name of the package (e.g., “\(package)@thing”
instead of “\@thing” or—even worse—just “\thing”). This helps
avoid inter-package naming conflicts. Finally, because decimal digits
are not normally allowed in macro names, it is common to use roman
numerals instead, for example: \arg@i, \arg@ii, \arg@iii, \arg@iv,
etc.

e You can use \index in the normal way to index things other than
macros and environments.

e Because macro names can be long, consider using the idxlayout
package to reduce the number of columns in the index. (It provides
control over other aspects of index formatting, as well.)

e If you use Emacs as your text editor, try out swiftex.el’s
doctex-mode, an Emacs mode designed specifically for writing .dtx
files. swiftex.el is available from CTAN.

As a more primitive alternative, look up Emacs’s string-rectangle
and kill-rectangle commands. These help a great deal with adding
and removing a “%” at the beginning of every line in a region.

SWithin a I¥TEX document, “@” is set to category code 12 (“other”), not category
code 11 (“letter”), so the user can’t easily define or use a macro with “@” in its name.

Table 3: Comment visibility
Appears Appears

. _ Mechanism
in docs in .sty
N N % ~"A (comment)
N Y % \iffalse
Hh (comment)
% \fi
Y N % (comment)

%t {comment)

21

e Be sure to read “The DocStrip Program” and “The doc and shortvrb
Packages”, the documentation for DocStrip and Doc, respectively (pro-
vided in .dtx format, of course). These explain how to do more
advanced things with .ins and .dtx files than this tutorial covered.
Some advanced topics include the following:

— Extracting multiple .sty files from a single .dtx file.
— Putting different preambles in different .sty files.

— Extracting something other than a .sty file (e.g., a configuration
file or Python code) from a .dtx file.

— Changing the formatting of the typeset documentation.

5 Advanced packaging techniques

This section describes various bits of wizardry that can be accomplished
with Doc and DocStrip. Few packages require these techniques but they are
included here for convenient reference.

5.1 Master documentation files

Doc supports “master” documentation files that typeset multiple .dtx files.
The advantage is that a set of related .dtx files can be typeset with continuous
section numbering and a single, unified index. In fact, the IXTEX 2¢ source
code itself is typeset using a master document (source2e.tex) that includes
all of the myriad .dtx files that comprise IXTEX 2¢.

To help produce master documents, the 1ltxdoc class provides a com-
mand called “\DocInclude”. 1ltxdoc’s \DocInclude is much like Doc’s
\DocInput—it even uses it internally—but has the following additional fea-
tures.

e \PrintIndex is automatically handled properly.

e Every \DocInclude’d file is given a title page.

e \tableofcontents works as expected. .dtx filenames are used as
“chapter” names.

22

Note that \DocInclude, unlike \DocInput, assumes a .dtx extension.

Appendix[A.5| presents a master-document skeleton that uses \DocInclude to
typeset (filel).dtx, (file2).dtx, and (file3).dtx as a single document. If you
prefer a more manual approach (e.g., if you dislike \DocInclude’s per-file title
pages), you can still use \DocInput. Just make sure to redefine \PrintIndex
to do nothing; otherwise, each file will get its own index. After all of the .dtx
files have been typeset, call the original \PrintIndex command to print a
unified index:

\begin{document}
\let\origPrintIndex=\PrintIndex \let\PrintIndex=\relax
\DocInput{(file!).dtx}
\DocInput{(file2).dtx}
\DocInput{(file3).dtx}
\origPrintIndex
\end{document}

5.2 Single-file package distributions

Although IWTEX packages are typically distributed as both a .ins and a
.dtx file, it is possible to distribute a package as a single file. The trick is to
include the entire .ins at the top of the .dtx file, right after the %(package)
lines:

%<*batchfile>
\begingroup

(Entire contents of the .ins file)

\endgroup
%</batchfile>

Omit the \endbatchfile to allow INTEX to continue on with the
rest of the .dtx file. Also, to avoid the “File (sty-file) already
exists on the system. Overwrite it? [y/n]” message you can put
“\askforoverwritefalse” before the first \generate command. (This will
automatically overwrite the existing .sty file. Wrapping the \generate

23

command(s) within “\IfFileExists{(sty-file)}H}{...}” will suppress the
overwriting.) You should also move the .sty installation instructions to the
end of the .dtx file so they don’t scroll off the user’s screen. You’ll need to
use \typeout as \Msg won’t be defined:

% \Finale

T \Typeouwt {Hkksskskaokskkokskkokokkskokkkokhkok ok dkok ok okok ok ok ok ok okok ok okok ok K okok ok
% \typeout{x}

% \typeout{* To finish the installation you have to move the}

% \typeout{* following file into a directory searched by TeX:}
% \typeout{*}

% \typeout{* \space\space skeleton.sty}

% \typeout{x}

% \typeout{* Documentation is in skeleton.dvi.}

% \typeout{*}

% \typeout{* Happy TeXing!}

%o \Typeout {Hkksskskoskskkokskkokokkkokkkokkokok ok ok ok okok ok kok ok kokkokok ok Kok }

\endinput

5.3 Class and style files with shared versioning information

Some packages contain both a .cls and .sty file. It may be desirable to
have these extracted from the same .dtx file and share the same versioning
string. The DocStrip documentation explains how to extract multiple files
from a single \generate call:

\generate{\file{(package).cls}{\from{(package).dtx}{class}}
\file{(package).styX{\from{(package).dtx}{package}}}

Using a single versioning string for both the .cls and .sty files can be
accomplished by changing the following lines in the .dtx file shown in

Appendix

%<class>\NeedsTeXFormat{LaTeX2e} [2023-11-01]
%<class>\ProvidesClass{(package)}
%h<*class>

(YYYY)-(MM)-(DD) v{version) (brief description)]
%h</class>

The replacement code specifies which lines belong to the class file and which
belong to the style file:

24

%<class|package>\NeedsTeXFormat{LaTeX2e}[2023-11-01]
%<class>\ProvidesClass{(package)}
%<package>\ProvidesPackage{(package)}
%<*class|package>

(YYYY)-(MM)-(DD) v{version) (brief description)]
%</class|package>

5.4 Gallery of advanced packaging techniques

See the .dtx gallery on CTAN https://www.ctan.org/tex-archive/info/
dtxgallery for examples of various packaging possibilities, including the
following:

e single-file package distributions (cf. Section
e conditional code inclusion (cf. Table |3))

e rearranging code for presentation in the documentation

A Skeleton files

This section contains complete skeletons of the types of files discussed in the
rest of the document. These skeletons can be used as templates for creating
your own packages.

A.1 A skeleton .ins file to generate a .sty file

A

%% Copyright (C) (year) (your name)

hhh

%% This file may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either

%% version 1.3 of this license or (at your option) any later
%% version. The latest version of this license is in:

hte

It http://www.latex-project.org/lppl.txt

YA

%% and version 1.3c or later is part of all distributions of
%% LaTeX version 2008-05-04 or later.

hte

25

https://www.ctan.org/tex-archive/info/dtxgallery
https://www.ctan.org/tex-archive/info/dtxgallery

\input docstrip.tex
\keepsilent

\usedir{tex/latex/(package)}
\preamble

This is a generated file.
Copyright (C) (year) (your name)

This file may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either
version 1.3 of this license or (at your option) any later
version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of
LaTeX version 2008-05-04 or later.

\endpreamble

\generate{\file{(package).styH\from{(package).dtx}{package}}}

\Mis g { s sk ke ks sk ok ok ks sk ko ks ek ok ke e sk ok ke sk ko ke ek ok ok ok
\Msg{*}

\Msg{* To finish the installation you have to move the}

\Msg{* following file into a directory searched by TeX:}
\Msg{*}

\Msg{* \space\space (package).sty?}

\Msg{*}

\Msg{* To produce the documentation run the file (package).dtx}
\Msg{* through LaTeX.}

\Msg{*}

\Msg{* Happy TeXing!}

N\Mis g { s sk ke sk ko ks sk ko ke sk ok ke e sk ok ke ek sk ko ke sk ko ok

\endbatchfile

A.2 A skeleton .ins file to generate a .cls file
he

26

%% Copyright (C) (year) (your name)

hhh

%% This file may be distributed and/or modified under the

%% conditions of the LaTeX Project Public License, either

%% version 1.3 of this license or (at your option) any later
%% version. The latest version of this license is in:

hhh

YA http://www.latex-project.org/lppl.txt

YA

%% and version 1.3c or later is part of all distributions of
%% LaTeX version 2008-05-04 or later.

hto

\input docstrip.tex
\keepsilent

\usedir{tex/latex/(class)}

\preamble

This is a generated file.

Copyright (C) (year) (your name)

This file may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either
version 1.3 of this license or (at your option) any later
version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of
LaTeX version 2008-05-04 or later.

\endpreamble
\generate{\file{(class).cls}H\from{(class).dtx}{class}}}

N\ M g { kst ke sk ok ks sk ke sk ok ke e sk ok ke ek ke sk ok ko
\Msg{*}

\Msg{* To finish the installation you have to move the}

\Msg{* following file into a directory searched by TeX:}
\Msg{*}

\Msg{* \space\space (class).cls}

\Msg{*}

27

\Msg{* To produce the documentation run the file (class).dtx}
\Msg{* through LaTeX.}

\Msg{*2}

\Msg{* Happy TeXing!}

N\Mis g { ks s sk ks sk ok ok ks sk ok ok ks kst ok ko s sk ok ks sk sk ok ks s sk sk ok ok

\endbatchfile

A.3 A skeleton .dtx file to generate a .sty file
% \iffalse meta-comment

% Copyright (C) (year) (your name)

% This file may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.

% The latest version of this license is in:

yA http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of LaTeX
% version 2008-05-04 or later.

% \fi

% \iffalse
%<package>\NeedsTeXFormat{LaTeX2e}[2023-11-01]
%i<package>\ProvidesPackage{(package)}
%<package> [(YYYY)-(MM)-(DD) v(version) (brief description)]
A
%h<xdriver>
\documentclass{ltxdoc}
\usepackage{(package)}
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\begin{document}
\DocInput{{package).dtx}
\end{document}
%h</driver>

h \fi

28

% \changes{vl.0}{(YYYY)-(MM)-(DD)}{Initial version}
% \GetFileInfo{(package).sty}
% \DoNotIndex{(list of control sequences)}

% \title{The \textsf{(package)} package\thanks{This document
% corresponds to \textsf{(package)}~\fileversion,

% dated \filedate.}}

% \author{(your name) \\ \texttt{(your e-mail address)}}

% \maketitle

% \begin{abstract}
% Put text here.
% \end{abstract}

% \section{Introduction}
% Put text here.
% \section{Usage}

% \DescribeMacro{\YOURMACRO}
% Put description of macro |\YOURMACRO| here.

% \DescribeEnv{YOURENV}
% Put description of environment |YOURENV| here.

% \MaybeStop{\PrintIndex}
% \section{Implementation}

% \begin{macro}{\YOURMACRO}

% Put explanation of |\YOURMACRO|'s implementation here.
yA \begin{macrocode}

\newcommand{\YOURMACRO}{}

yA \end{macrocode}

% \end{macro}

A

% \begin{environment}{YOURENV}

% Put explanation of |YOURENV|'s implementation here.
pA \begin{macrocode}

\newenvironment{YOURENV}{}{}

29

pA \end{macrocode}
% \end{environment}
yA

% \Finale

\endinput

A.4 A skeleton .dtx file to generate a .cls file
% \iffalse meta-comment

% Copyright (C) (year) (your name)

% This file may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.

% The latest version of this license is in:

yA http://www.latex-project.org/lppl.txt

% and version 1.3c or later is part of all distributions of LaTeX
% version 2008-05-04 or later.

h\fi

% \iffalse
%<*driver>
\ProvidesFile{(class).dtx}
%</driver>
%<class>\NeedsTeXFormat{LaTeX2e}[2023-11-01]
%<class>\ProvidesClass{(class)}
%<*class>
(YYYY)-(MM)-(DD) v{version) (brief description)]

%</class>
pA
%<*driver>
\documentclass{ltxdoc}
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\begin{document}

\DocInput{{class).dtx}
\end{document}
%</driver>

30

h

\fi
\changes{v1.0}{(YYYY)-(MM)-(DD)}{Initial version}
\GetFileInfo{(class).dtx}
\DoNotIndex{(list of control sequences)}
\title{The \textsf{(class)} class\thanks{This document
corresponds to \textsf{(class)} \fileversion,
dated \filedate.}}
\author{(your name) \\ \texttt{(your e-mail address)}}
\maketitle
\begin{abstract}
Put text here.
\end{abstract}
\section{Introduction}
Put text here.

\section{Usage}

\DescribeMacro{\YOURMACRO}
Put description of macro |\YOURMACRO| here.

\DescribeEnv{YOURENV}
Put description of environment |YOURENV| here.

\MaybeStop{\PrintIndex}
\section{Implementation}
\begin{macro}{\YOURMACRO}

Put explanation of |\YOURMACRO|'s implementation here.
\begin{macrocode}

\newcommand{\YOURMACRO}{}

b
h
h
h
h
b

\end{macrocode}
\end{macro}

\begin{environment}{YOURENV}

Put explanation of |YOURENV|'s implementation here.
\begin{macrocode}

31

\newenvironment{YOURENV}{}{}
% \end{macrocode}

% \end{environment}

yA

% \Finale

\endinput

A.5 A skeleton master-document file (.tex)

\documentclass{ltxdoc}
\usepackage{(filel)}
\usepackage{(file2)}
\usepackage{(file3)}

\title{(title)}
\author{(you)}

\EnableCrossrefs
\CodelineIndex
\RecordChanges

\begin{document}
\maketitle

\begin{abstract}
Put text here.
\end{abstract}

\tableofcontents
\DocInclude{(file)}
\DocInclude{(file2)}

\DocInclude{(file3)}
\end{document}

32

References

[1] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The BTgX
Companion. Addison Wesley, Reading, Massachusetts, October 1, 1994.
ISBN 0-201-54199-8.

[2] Donald E. Knuth. Literate programming. The Computer Journal,
27(2):97-111, May 1984. British Computer Society. Available from
http://www.literateprogramming.com/knuthweb.pdf.

[3] BTEX Project Team. KTEX for package and class authors. Available
from https://ctan.org/pkg/clsguide, October 24, 2023.

33

http://www.literateprogramming.com/knuthweb.pdf
https://ctan.org/pkg/clsguide

Index

¢

in macro names, [20H2]]

\askforoverwritefalse,
\AtBeginDocument,
\author,

\BaseDirectory,

change history,

\changes, [10} [14]

\chapter,

class file, [1] [6]

.cls, see class file

\CodelineIndex,

comments, [2| @ [6H7 [10} I821]

Comprehensive TEX Archive Net-
work,

control sequences,

copyright, [2] [6] [7]

CTAN, see Comprehensive TEX
Archive Network

date format,
\DescribeEnv,
\DescribeMacro,
\DisableCrossrefs, 9]

Doc,
\DocInclude,
\DocInput,
DocStrip, 2 B O 22 24

doctex-mode, [2]]

documentation, prebuilt PDF, [20]
\documentclass, [T} [J]

documented IXTEX file, [T} 2} BH25] 28]
\DoNotIndex,

driver code, [9]

.dtx, see documented IMTEX file

Emacs,
\EnableCrossrefs,
\endbatchfile, [0}
\endpreamble,

environment, [T6HI9]

\file,

\filedate,
\fileinfo, [IOHI]]
\fileversion,
\Finale,

\footnote,

\from,

\generate, 5] [7]
\GetFileInfo,

idxlayout, [2]]

\iffalse,[7]
\IfFileExists, 24]

\index,

indexing, 2 B} [} (T3 23
\input,

.ins, see installer file

installer file,

\keepsilent,

BT,

IXTEX Project Public License,

license, [6 [7]

literate programming,

LPPL, see INTEX Project Public Li-
cense

1txdoc, 9} [12] [13] 20} 22]

ltxdoc.cfg, [I0]

macro, [IGHIY|
macrocode, [I520]
makeindex, [I4] [I5]

34

\maketitle, \thanks,

\marg, \title,
\MaybeStop, \typeout,
\meta, I3

meta-comment, [7] \usedir,
\Msg, [B}H6] [24] \usepackage, [T]
\NeedsTeXFormat, [7H3| \verb, [13|

\newcommand,
\NewDocElement,

\newenvironment,

\oarg,
\obeyspaces, [0]

\OnlyDescription,
packnge, B B

\PageIndex, [J]

\parg,
preamble, [4]

\preamble,
\PrintChanges,

\PrintIndex, [T4]
\ProvidesFile,

\ProvidesPackage, [TH9

README file,

\RecordChanges,
\RequirePackage,
roman numerals,

\section,

shortvrb, [[3] 2]
\StopEventually,
.sty, see style file

style file, 112 B

swiftex.el, [2]]

\tableofcontents,
\textsf,

35

	Introduction
	The .ins file
	The .dtx file
	Prologue
	User documentation
	Code and commentary

	Tips, tricks, and recommendations
	Advanced packaging techniques
	Master documentation files
	Single-file package distributions
	Class and style files with shared versioning information
	Gallery of advanced packaging techniques

	Skeleton files
	A skeleton .ins file to generate a .sty file
	A skeleton .ins file to generate a .cls file
	A skeleton .dtx file to generate a .sty file
	A skeleton .dtx file to generate a .cls file
	A skeleton master-document file (.tex)

	References
	Index

