

Porting a simple TCL
Application to Android

● Elmicron
● HIBIScan
● AndroWish start
● User Interface
● APK
● TCL Activities
● Wish List

Harald.Oehlmann@elmicron.de
Naumburg/Germany

Chat: oehhar, Wiki: hao

Company
Elmicron

Auto ID
→ Barcode and RFID

→ IoT Standards

8 Employees

TclDevKit Licence

HIBIScan
● TCL/Tk8.6.2,

Ttk

● Win CE

● Fix window with
no scrollbars. It
clips if window
to small

● Adjustable Font
Size with slider
control

font configure\
 MyFont -size 32

Start with AndroWish: just works!
● Google Nexus 5: Android 5,

1440x2560 Pixel

● Click on tcl-file starts program (Total
Commander)

● Big virtual screen

● Move with one finger

● Virtual Zoom with two fingers pinching
(not font size change)

● Keyboard shows up when entry has
focus

● Horizontal to vertical change when
device is turned

FAKE

Console ?
● In Android script, activate tkcon client

● On PC bridge Android tcp/ip port to Windows tcp/ip port

● On PC start TkCon and attach to socket "localhost 12345"

adb forward tcp:12345 tcp:12345

package require tkconclient
tkconclient::start 12345

UI Design

● No viewport functionality:
manage on my own

● No menu

● Always visible Buttons below.
Height always two Text lines.
Smaller width -> no text

● Two entry lines always visible

● Center area with scrollbar and
moving with one finger

● Font size resize with two fingers
pinch (also resizes buttons)

● Full screen info page

Finger scrolling

● Switch viewport off:
sdltk touchtranslate 3

● "sframe.tcl" by Paul Walton
from TCL wiki (has
mousewheel scrolling)

● Extended by finger scroll

● X/Y units are screen
width/height divided by
10000 -> Should exactly
scroll with the finger

● Small scrollbars good for
orientation

bind $t <<FingerDown>> [list\
 +motion start $p %W %x %y %s]
bind $t <<FingerMotion>> [list\
 +motion motion $p %W %x %y %s]

proc motion {mode p W X Y Finger} {
 if {$mode eq "motion"} {
 $p.canvas xview scroll [expr {
 ($mx - $X) *
 [winfo screenwidth .]/10000}]
 units
 $p.canvas yview scroll ...
 }
 set mx $X
 set my $Y
}

Pinch to Change Font Size

● Bind function

● State values:
0:Motion, 1:Start, 2:End 1st
Finger, 3:End Both Fingers

● Unit of motion is ???

● Font size values are small
(3) even for huge screen
resolution

● Change unit which felt good
for font size (points) was
10/screen width

bind . <<PinchToZoom>> {+PiZo %x %s}

proc PiZo {X State} {
 switch -exact -- $State {
 1 { # Start
 set Value $X
 set FontSize $CurrSize
 }
 0 - 2 { # Motion, End
 if {$Value > 0} {
 NewFontSize [expr {
 $FontSize
 + ($X - $Value) * 10
 / [winfo screenwidth .] }]
 }
 }
 }
}

Button line with 2 lines hight

● Frame with:

● A frame to set height
● Packed Buttons with

-fill both -expand true
● Buttons contain one of two

images, 32x32 and 64x64

● Frame height and image
choice changes with "pinch
to zoom"

● Call "sframe resize"

proc NewFontSize {Size} {
 # Set all font sizes
 font configure Font -size $Size
 sframe resize $P

 # Measure widget with two text
 # lines
 $LabelWidget configure -font Font
 set Height [winfo reqheight\
 $LabelWidget]

 #Change images to $Height<64?32:64
 # Set button height frame widget
 set BuHeight [expr {
 entier($Height/2)}]
 if {$BuHeight<32}{set BuHeight 32}
 $HeightFrame configure\
 -height $BuHeight

}

Final program
Android

● Looks ok on Nexus with
resolution of 2400 pixel

● Looks also ok on HTC with
resolution 800x320 pixel

Final Program: Desktop

The APK story
http://wiki.tcl.tk/AndroWish tells you the way (CW):

Please fetch the sources (the big .tar.bz2), unpack it, have Android SDK and NDK
installed, don't use Eclipse, adapt local.properties to where you've installed Android
SDK, have your PATH properly set so that ndk-build can do its job, then invoke "ant
debug", be patient, and you'll finally will have bin/AndroWish-debug.apk ready to be
installed onto your device. I have never verified the build process in combination with

Eclipse. Once upon a time, I did my very first steps using the tips from the SDL
documentation regarding Android.

When you want to wrap your own app written as Tcl code, you should add it below
assets/app, have the launching script as main.tcl, fiddle the toplevel
AndroidManifest.xml to have your app/class name in, remove that

AndroWishScript/Launcher stuff from the manifest (since not needed for a standalone
app), derive your app main class (yes, some Java required) from

src/tk/tcl/wish/AndroWish.java, e.g.

import tk.tcl.wish.AndroWish;
public class TclTkRules extends AndroWish {}

fiddle the res directory with a new really kooool icon and title for your app.

Dummy³

Steps to success

● Build AndroWish: SuSELinux, Java7, SDK,
 NDK9, locale.properties, ant debug
● Customizing AndroWish:
 Delete unneeded stuff: packages, x86, fonts
 Add own scripts (in assets/main.tcl)
 Change package name (including java class)
 Only required permissions (no phone, bluetooth)
 Start with intend action
 Icon
● Prepare signing -> ant release -> 7.8MB apk

TCL/Tk activities
● BWidget: Koen Dankart, Kevin Waltzer
● msgcat (TIP399/412) Jos Descoster
● Core Windows socket driver (TIP427/428):
 Reinhard Max
● Zint Bar code generator TCL interface: Robin
● Rivet (Massimo Manghi):
 tcl survives fork (Alexandre Ferrieux) ,
 form package (Lehnbauer), rpm's (Reinhard)
● Img patch (write resolution field of bmp):
 Jan Nijtmans
● Core Windows make file: Donal(d)
● TCL Web Service (Gerald Leister)

TCL Wishlist

● Help in the TIP process
● TIP for OO-msgcat
● TCL WinCE (ETCL 8.5.7) (Bar Code Terminals)
● Themed tabbed widget with scrolling of tabs
● List equal ($L1 eql $L2), also in switch
● Dict equal -noorder/-order
● Windows 8 "App" Theme
● Android Theme
● Transparency in Tk

Dreaming?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16

